Giải bài 10 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Chứng minh các đẳng thức sau đunggs với mọi \(n \in \mathbb{N}*\): a) \(1 + 2C_n^1 + 4C_n^2 + ... + {2^{n - 1}}C_n^{n - 1} + {2^n}C_n^n = {3^n}\)

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Quảng cáo

Đề bài

Chứng minh các đẳng thức sau đunggs với mọi \(n \in \mathbb{N}*\):

a) \(1 + 2C_n^1 + 4C_n^2 + ... + {2^{n - 1}}C_n^{n - 1} + {2^n}C_n^n = {3^n}\)

b) \(C_{2n}^0 + C_{2n}^2 + C_{2n}^4 + ... + C_{2n}^{2n} = C_{2n}^1 + C_{2n}^3 + C_{2n}^5 + ... + C_{2n}^{2n - 1}\)

Phương pháp giải - Xem chi tiết

Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)

Lời giải chi tiết

a) Áp dụng công thức nhị thức Newton, ta có:

\({(1 + x)^n} = C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}\)

Thay \(x = 2\) ta được:

\({3^n} = C_n^0 + C_n^1.2 + C_n^2{2^2} + ... + C_n^n{2^n}\)

Hay \(1 + 2C_n^1 + 4C_n^2 + ... + {2^{n - 1}}C_n^{n - 1} + {2^n}C_n^n = {3^n}\)

b) Áp dụng công thức nhị thức Newton, ta có:

\({(1 + x)^{2n}} = C_{2n}^0 + C_{2n}^1x + C_{2n}^2{x^2} + ... + C_{2n}^{2n}{x^{2n}}\)

Thay \(x =  - 1\) ta được:

\({(1 + \left( { - 1} \right))^{2n}} = C_{2n}^0 + C_{2n}^1.\left( { - 1} \right) + C_{2n}^2{\left( { - 1} \right)^2} + ... + C_{2n}^{2n}{\left( { - 1} \right)^{2n}}\)

Hay \(C_{2n}^0 - C_{2n}^1 + C_{2n}^2 - ... - C_{2n}^{2n - 1} + C_{2n}^{2n} = 0\)

Hay \(C_{2n}^0 + C_{2n}^2 + C_{2n}^4 + ... + C_{2n}^{2n} = C_{2n}^1 + C_{2n}^3 + C_{2n}^5 + ... + C_{2n}^{2n - 1}\)

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close