Quan sát Hình 36 và chỉ ra một cặp tam giác đồng dạng:
Xem lời giảiCho tam giác \(ABC\) có \(AB = 12\)cm, \(AC = 18\)cm, \(BC = 27\)cm. Điểm \(D\) thuộc cạnh \(BC\) sao cho \(CD = 12\)cm. Tính độ dài \(AD\).
Xem lời giảiTrong Hình 37, cho (O) là giao điểm hai đường chéo (AC) và (BD) của tứ giác (ABCD). Kẻ một đường thẳng tùy ý đi qua (O) và cắt cạnh (AB) tại (M,CD) tại (N).
Xem lời giảiHình 38 cho tam giác \(ABC\) vuông ở \(A\), \(AB = 5\)cm, \(AC = 12\)cm. Tam giác \(HAB\) vuông cân tại \(H\), tam giác \(KAC\) vuông cân tại \(K\).
Xem lời giảiHình thang (ABCD) ở Hình 39 có (AB//CD,AB < CD,widehat {ABD} = 90^circ ). Hai đường chéo (AC) và (BD) cắt nhau tại (G).
Xem lời giảiCho tam giác (ABC) vuông ở (A) có (AB = 3AC) và điểm (D) thuộc cạnh (AB) sao cho (AD = 2DB). Chứng minh: (widehat {ADC} + widehat {ABC} = 45^circ ).
Xem lời giảiCho tam giác (ABC) có (AB = 2)cm, (AC = 3)cm, (BC = 4)cm. Chứng minh: (widehat {BAC} = widehat {ABC} + 2widehat {BCA}).
Xem lời giải