Giải bài 42 trang 76 sách bài tập toán 8 – Cánh diều

Cho tam giác \(ABC\) vuông ở \(A\) có \(AB = 3AC\) và điểm \(D\) thuộc cạnh \(AB\) sao cho \(AD = 2DB\). Chứng minh: \(\widehat {ADC} + \widehat {ABC} = 45^\circ \).

Quảng cáo

Đề bài

Cho tam giác \(ABC\) vuông ở \(A\) có \(AB = 3AC\) và điểm \(D\) thuộc cạnh \(AB\) sao cho \(AD = 2DB\). Chứng minh: \(\widehat {ADC} + \widehat {ABC} = 45^\circ \).

Phương pháp giải - Xem chi tiết

Áp dụng trường hợp đồng dạng thứ hai của tam giác: cạnh – góc – cạnh

Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau thì hai tam giác đó đồng dạng.

Lời giải chi tiết

Gọi \(E\) là trung điểm của \(AD\). Đặt \(AE = x,AC = x\).

Có \(AE = ED = DB,AB = 3AC\) nên \(ED = x,EB = 2x\) và \(CE = x\sqrt 2 \).

Xét hai tam giác \(EDC\) và \(ECB\), ta có: \(\widehat {CED} = \widehat {CEB}\) và \(\frac{{ED}}{{EC}} = \frac{{EC}}{{EB}}\)

\(=>\Delta EDC\backsim \Delta ECB\). Do đó \(\widehat {ECD} = \widehat {CEB}\).

Vì vậy \(\widehat {ADC} + \widehat {ABC} = \widehat {EDC} + \widehat {ECD} = \widehat {AEC}\).

Mặt khác, do tam giác \(AEC\) là tam giác vuông cân nên \(\widehat {AEC} = 45^\circ \).

Vậy \(\widehat {ADC} + \widehat {ABC} = 45^\circ \).

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close