Cho tam giác \(ABC\). Các điểm \(M,N\) lần lượt thuộc các cạnh \(AB\) và \(AC\) thỏa mãn \(MN//BC\) và \(\frac{AM}{MB}=\frac{2}{3}\). Tỉ số \(\frac{NC}{AN}\) bằng
Xem lời giảiCho hai tam giác \(MNP\) và \(M'N'P'\). Phát biểu nào sau đây là đúng? A. Nếu \(\widehat{M}=\widehat{M'}\) và \(\widehat{N}=\widehat{P'}\) thì \(\Delta MNP\backsim \Delta M'N'P'\).
Xem lời giảiNếu \(\Delta MNP\backsim \Delta DEG\) thì
Xem lời giảiCho \(\Delta MNP\backsim \Delta M'N'P'\) và \(\widehat{M}=30{}^\circ ,\widehat{N'}=40{}^\circ \). Số đo góc \(P\) là:
Xem lời giảiHình 54 cho biết \(A'B'=4,A'O=3,AO=6,OB=x,AB=y\) Giá trị của biểu thức \(x+y\) là:
Xem lời giảiCho tam giác \(ABC\) có \(DE//BC\) (Hình 55). Khẳng định nào dưới đây đúng?
Xem lời giảiCho tam giác \(ABC\) có \(BD\) là đường phân giác của góc \(ABC\) (Hình 56). Độ dài \(DC\) là:
Xem lời giải\(\Delta ABC\backsim \Delta DEF\) theo tỉ số đồng dạng \(k\), \(\Delta MNP\backsim \Delta DEF\) theo tỉ số đồng dạng \(q\).
Xem lời giảiĐể đo khoảng cách \(AB\), trong đó điểm \(B\) không tới được, người ta tiến hành đo bằng cách lấy các điểm \(C,D,E\) sao cho \(AD=10\)m
Xem lời giảiCho tam giác \(ABC\), điểm \(M\) thuộc cạnh \(BC\) sao cho \(MC=2MB\). Đường thẳng qua \(M\) song song với \(AC\) cắt \(AB\) ở \(D\).
Xem lời giải