Giải bài 64 trang 84 sách bài tập toán 8 – Cánh diềuĐể đo khoảng cách \(AB\), trong đó điểm \(B\) không tới được, người ta tiến hành đo bằng cách lấy các điểm \(C,D,E\) sao cho \(AD=10\)m Quảng cáo
Đề bài Để đo khoảng cách \(AB\), trong đó điểm \(B\) không tới được, người ta tiến hành đo bằng cách lấy các điểm \(C,D,E\) sao cho \(AD=10\)m, \(CD=7\)m, \(DE=4\)m (Hình 57). Khi đó, khoảng cách \(AB\) (tính theo đơn vị mét và làm tròn kết quả đến hàng phần mười) là:
A. 9,3 m
B. 9,4 m
C. 9,6 m
D. 9,7 m
Phương pháp giải - Xem chi tiết Áp dụng trường hợp đồng dạng thứ nhất của tam giác vào tam giác vuông: Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng. Lời giải chi tiết Chọn đáp án D Xét hai tam giác \(\Delta ABC\) và \(\Delta DEC\) có \(\widehat{BAC}=\widehat{EDC};\widehat{ACB}=\widehat{DCE}\) \(=>\Delta ABC\backsim \Delta DEC\) (g.g) \(=>\frac{AB}{DE}=\frac{AC}{DC}\) Hay \(\frac{AB}{4}=\frac{10+7}{7}=>AB=\frac{4.\left( 10+7 \right)}{7}=9,7\left( m \right)\) Vậy \(AB=9,7\) (m).
Quảng cáo
|