Bài 1 trang 196 Sách bài tập (SBT) Toán Hình học 10

Trong mặt phẳng Oxy cho tam giác ABC

Quảng cáo

Trong mặt phẳng  Oxy cho tam giác ABC, biết đỉnh A(1 ; 1) và tọa độ trọng tâm G(1 ; 2). Cạnh AC và đường trung trực của nó lần lượt có phương trình là x + y - 2 = 0 và  - x + y - 2 = 0. Các điểm M và N lần lượt là trung điểm của BC và AC.

a) Hãy tìm tọa độ các điểm M và N.

b) Viết phương trình hai đường thẳng chứa hai cạnh AB và BC. 

Gợi ý làm bài

(h.3.28) 

a) \(\eqalign{
& \overrightarrow {AM} = {3 \over 2}\overrightarrow {AG} \cr
& \Leftrightarrow \left\{ \matrix{
{x_M} - 1 = {3 \over 2}(1 - 1) \hfill \cr
{y_M} - 1 = {3 \over 2}(2 - 1) \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
{x_M} = 1 \hfill \cr
{y_M} = {5 \over 2}. \hfill \cr} \right. \cr} \)

Vậy M có tọa độ là \(\left( {1;{5 \over 2}} \right)\)

Điểm N(x ; y) thỏa mãn hệ phương trình

\(\left\{ \matrix{
x + y = 2 \hfill \cr
- x + y = 2 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 0 \hfill \cr
y = 2. \hfill \cr} \right.\)

b) \(\eqalign{
& \overrightarrow {AB} = 2\overrightarrow {NM} \cr
& \Leftrightarrow \left\{ \matrix{
{x_B} - 1 = 2(1 - 0) \hfill \cr
{y_B} - 1 = 2\left( {{5 \over 2} - 2} \right) \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
{x_B} = 3 \hfill \cr
{y_B} = 2. \hfill \cr} \right. \cr} \)

Đường thẳng chứa cạnh AB đi qua hai điểm A(1 ;1) và B(3 ; 2) nên có phương trình : x - 2y + 1=0.

Đường thẳng chứa cạnh BC đi qua hai điểm B(3 ; 2) và $M\left( {1;{5 \over 2}} \right)$ nên có phương trình:

x + 4y - 11 = 0

Sachbaitap.net

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!

close