Trắc nghiệm Bài 5: Hình chữ nhật Toán 8 Cánh diều

Đề bài

Câu 1 :

Hình chữ nhật có kích thước hai cạnh kề là \(5\,cm\) và \(12\,cm\). Độ dài đường chéo của hình chữ nhật đó là

  • A
    \(7\;cm\).
  • B
    \(13\;cm\).
  • C
    \(15\;cm\).
  • D
    \(17\;cm\).  
Câu 2 :

Điền từ, cụm từ thích hợp vào chỗ (…) trong câu sau để được khẳng định đúng:

Tứ giác có ... là hình chữ nhật.”

  • A
    hai góc vuông.
  • B
    bốn góc vuông.  
  • C
    bốn cạnh bằng nhau.
  • D
    các cạnh đối song song.
Câu 3 :

Hai đường chéo của hình chữ nhật có tính chất nào sau đây?

  • A
    Chúng vuông góc với nhau.
  • B
    Chúng bằng nhau.
  • C
    Chúng cắt nhau tại trung điểm của mỗi đường.
  • D
    Chúng bằng nhau và cắt nhau tại trung điểm của mỗi đường.
Câu 4 :

Chọn khẳng định đúng trong các khẳng định sau

  • A
    Hình chữ nhật là tứ giác có bốn cạnh bằng nhau.
  • B
    Hình chữ nhật là tứ giác có bốn góc vuông.
  • C
    Hình chữ nhật là tứ giác có hai góc vuông.
  • D
    Hình chữ nhật là tứ giác có hai đường chéo bằng nhau.
Câu 5 :

Hình chữ nhật có mấy tâm đối xứng?

  • A
    1.
  • B
    2.
  • C
    3.
  • D
    4.
Câu 6 :

Hình bình hành cần có thêm điều kiện nào sau đây thì trở thành hình chữ nhật?

  • A
    Có một góc vuông.
  • B
    Có hai cạnh kề bằng nhau.
  • C
    Có hai đường chéo vuông góc.
  • D
    Có hai đường chéo cắt nhau tại trung điểm mỗi đường.
Câu 7 :

Cho hình chữ nhật \(ABCD\) có \(AB{\rm{ }} = {\rm{ }}6\;cm\) và đường chéo \(BD{\rm{ }} = {\rm{ }}10\;cm\). Tính độ dài cạnh \(BC\).

  • A
    \(7\;cm\).
  • B
    \(8\;cm\).
  • C
    \(9\;cm\).
  • D
    \(10\;cm\).
Câu 8 :

Hình bình hành \(ABCD\) là hình chữ nhật khi

  • A
    \(AB{\rm{ }} = AD\).
  • B
    \(\widehat A = {90^o}\).
  • C
    \(AB = 2AC\).
  • D
    \(\widehat A = \widehat C\).
Câu 9 :

Chọn câu sai. Tứ giác ABCD là hình chữ nhật khi:

  • A
    \(\widehat A = \widehat B = \widehat C = {90^o}\)
  • B
    \(\widehat A = \widehat B = \widehat C = {90^o}\) và AB // CD
  • C
    AB = CD = AD = BC
  • D
    AB // CD; AB = CD; AC = BD
Câu 10 :

Hãy chọn câu đúng. Cho ΔABC với M thuộc cạnh BC. Từ M vẽ ME song song với AB và MF song song với AC. Hãy xác định điều kiện của ΔABC để tứ giác AEMF là hình chữ nhật.

  • A
    ΔABC vuông tại A
  • B
    ΔABC vuông tại B
  • C
    ΔABC vuông tại C
  • D
    ΔABC đều
Câu 11 :

Độ dài đường trung tuyến ứng với cạnh huyền của tam giác vuông có các cạnh góc vuông bằng 6cm, 8cm là:

  • A
    10cm
  • B
    9cm
  • C
    5cm
  • D
    8cm
Câu 12 :

Cho tam giác ABC vuông tại A, điểm M thuộc cạnh huyền BC. Gọi D, E lần lượt là chân đường vuông góc kẻ từ M đến AB, AC. Điểm M ở vị trí nào trên BC thì DE có độ dài nhỏ nhất?

  • A
    M là hình chiếu của A trên BC
  • B
    M là trung điểm của BC
  • C
    M trùng với B
  • D
    Đáp án khác
Câu 13 :

Cho tam giác \(ABC\), đường cao \(AH\). \(I\) là trung điểm của \(AC\), \(E\) đối xứng với \(H\)qua \(I\). Tứ giác \(AHCE\) là hình gì?

  • A
    Hình thang.
  • B
    Hình thang cân.
  • C
    Hình thang vuông.
  • D
    Hình chữ nhật.
Câu 14 :

Hình chữ nhật \(ABCD\) có \(O\) là giao điểm của hai đường chéo. Biết \(\widehat {AOD} = {50^o}\), tính số đo \(\widehat {ABO}\).

  • A
    \({50^o}\).
  • B
    \({25^o}\).
  • C
    \({90^o}\).
  • D
    \({130^o}\).
Câu 15 :

Cho tam giác \(ABC\) vuông tại \(A\). Gọi \(M\), N, \(P\) lần lượt là trung điểm thuộc các cạnh \(AB\), AC, \(BC\) và \(MP = \frac{{AC}}{2}\), \(MP\;{\rm{//}}\;AN\).Tứ giác \(AMPN\) là hình gì?

  • A
    Hình thang.
  • B
    Hình thang cân.
  • C
    Hình chữ nhật.
  • D
    Hình thang vuông.
Câu 16 :

Cho hình chữ nhật \(ABCD\). \(E\), \(F\), \(G\), \(H\) là trung điểm của các cạnh \(AB\), \(BC\), \(CD\), \(DA\) và \(EF\;\;{\rm{//}}\;\;AC\), \(GH\;\;{\rm{//}}\;\;AC\);\(EH\;\;{\rm{//}}\;\;BD\),\(FG\;\;{\rm{//}}\;\;BD\) Tứ giác \(EFGH\) là hình gì?

  • A
    Hình chữ nhật.
  • B
    Hình thang cân.
  • C
    Hình thang.
  • D
    Hình bình hành.
Câu 17 :

Cho tam giác ABC vuông cân tại A, AC = 6cm, điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là các chân đường vuông góc kẻ từ M đến AB, AC. Chu vi của tứ giác ADME bằng:

  • A
    6cm
  • B
    36cm
  • C
    18cm
  • D
    12cm
Câu 18 :

Cho tam giác ABC với ba trung tuyến AI, BD, CE đồng quy tại G sao cho ED // BC; \(E{\rm{D}} = \frac{1}{2}BC\) . M và N lần lượt là các điểm của GC và GB và MN // BC; \(MN = \frac{1}{2}BC\); Tứ giác MNED là hình gì?

  • A
    Hình chữ nhật
  • B
    Hình bình hành
  • C
    Hình thang cân
  • D
    Hình thang vuông
Câu 19 :

Cho hình thang vuông \(ABCD\) có \(\widehat A = \widehat D = {90^o}\) . Gọi \(M\) là trung điểm của \(AC\) và \(BM{\rm{ }} = {\rm{ }}\frac{1}{2}AC\) . Khẳng định nào sau đây sai

  • A
    \(AC = BD\).
  • B
    Tứ giác \(ABCD\) là hình chữ nhật.
  • C
    \(M\) là trung điểm của \(BD\).
  • D
    \(AB = AD\).
Câu 20 :

Cho tứ giác \(ABCD\). \(E\), \(F\), \(G\), \(H\) là trung điểm của các cạnh \(AB\), \(BC\), \(CD\), \(DA\)và \(EF\;\;{\rm{//}}\;\;AC\), \(GH\;\;{\rm{//}}\;\;AC\), \(EH\;\;{\rm{//}}\;\;BD\), \(FG\;\;{\rm{//}}\;\;BD\). Tứ giác \(ABCD\) cần thêm điều kiện nào sau đây để tứ giác \(EFGH\) là hình chữ nhật?

  • A
    \(AC = BD\) .
  • B
    \(AC \bot BD\).
  • C
    \(AB = BC\).  
  • D
    \(AB\;{\rm{//}}\;CD\) .

Lời giải và đáp án

Câu 1 :

Hình chữ nhật có kích thước hai cạnh kề là \(5\,cm\) và \(12\,cm\). Độ dài đường chéo của hình chữ nhật đó là

  • A
    \(7\;cm\).
  • B
    \(13\;cm\).
  • C
    \(15\;cm\).
  • D
    \(17\;cm\).  

Đáp án : B

Phương pháp giải :
Áp dụng tính chất của hình chữ nhật và định lí Pytago trong tam giác vuông
Lời giải chi tiết :

Áp dụng định lý Pytago trong tam giác vuông, ta được độ dài đường chéo hình chữ nhật bằng

\(\sqrt {{5^2} + {{12}^2}}  = \sqrt {169}  = 13\;\left( {cm} \right)\)

Câu 2 :

Điền từ, cụm từ thích hợp vào chỗ (…) trong câu sau để được khẳng định đúng:

Tứ giác có ... là hình chữ nhật.”

  • A
    hai góc vuông.
  • B
    bốn góc vuông.  
  • C
    bốn cạnh bằng nhau.
  • D
    các cạnh đối song song.

Đáp án : B

Phương pháp giải :
Dựa vào định nghĩa của hình chữ nhật
Lời giải chi tiết :
Tứ giác có bốn góc vuông là hình chữ nhật
Câu 3 :

Hai đường chéo của hình chữ nhật có tính chất nào sau đây?

  • A
    Chúng vuông góc với nhau.
  • B
    Chúng bằng nhau.
  • C
    Chúng cắt nhau tại trung điểm của mỗi đường.
  • D
    Chúng bằng nhau và cắt nhau tại trung điểm của mỗi đường.

Đáp án : D

Phương pháp giải :
Dựa vào tính chất của hình chữ nhật
Lời giải chi tiết :
Hai đường chéo của hình chữ nhật bằng nhau và cắt nhau tại trung điểm của mỗi đường.
Câu 4 :

Chọn khẳng định đúng trong các khẳng định sau

  • A
    Hình chữ nhật là tứ giác có bốn cạnh bằng nhau.
  • B
    Hình chữ nhật là tứ giác có bốn góc vuông.
  • C
    Hình chữ nhật là tứ giác có hai góc vuông.
  • D
    Hình chữ nhật là tứ giác có hai đường chéo bằng nhau.

Đáp án : B

Phương pháp giải :
Dựa vào tính chất và định nghĩa của hình chữ nhật
Lời giải chi tiết :
Hình chữ nhật là tứ giác có bốn góc vuông.
Câu 5 :

Hình chữ nhật có mấy tâm đối xứng?

  • A
    1.
  • B
    2.
  • C
    3.
  • D
    4.

Đáp án : A

Phương pháp giải :
Dựa vào tính chất của hình chữ nhật
Lời giải chi tiết :
Hình chữ nhật có 1 tâm đối xứng.
Câu 6 :

Hình bình hành cần có thêm điều kiện nào sau đây thì trở thành hình chữ nhật?

  • A
    Có một góc vuông.
  • B
    Có hai cạnh kề bằng nhau.
  • C
    Có hai đường chéo vuông góc.
  • D
    Có hai đường chéo cắt nhau tại trung điểm mỗi đường.

Đáp án : A

Phương pháp giải :
Dựa vào dấu hiệu nhận biết của hình chữ nhật
Lời giải chi tiết :
Hình bình hành có một góc vuông là hình chữ nhật
Câu 7 :

Cho hình chữ nhật \(ABCD\) có \(AB{\rm{ }} = {\rm{ }}6\;cm\) và đường chéo \(BD{\rm{ }} = {\rm{ }}10\;cm\). Tính độ dài cạnh \(BC\).

  • A
    \(7\;cm\).
  • B
    \(8\;cm\).
  • C
    \(9\;cm\).
  • D
    \(10\;cm\).

Đáp án : B

Phương pháp giải :
Áp dụng tính chất của hình chữ nhật và định lí Pytago trong tam giác vuông
Lời giải chi tiết :

Hình chữ nhật \(ABCD\) có \(CD = AB = 6\;\;cm\).

Áp dụng định lý Pytago trong tam giác \(BCD\) , ta có:

\(BC = \sqrt {B{D^2} - C{D^2}} = \sqrt {{{10}^2} - {6^2}} = \sqrt {64} = 8\;\;\left( {cm} \right)\)

Câu 8 :

Hình bình hành \(ABCD\) là hình chữ nhật khi

  • A
    \(AB{\rm{ }} = AD\).
  • B
    \(\widehat A = {90^o}\).
  • C
    \(AB = 2AC\).
  • D
    \(\widehat A = \widehat C\).

Đáp án : B

Phương pháp giải :
Dựa vào dấu hiệu nhận biết của hình chữ nhật
Lời giải chi tiết :

Hình bình hành có một góc vuông là hình chữ nhật.

Câu 9 :

Chọn câu sai. Tứ giác ABCD là hình chữ nhật khi:

  • A
    \(\widehat A = \widehat B = \widehat C = {90^o}\)
  • B
    \(\widehat A = \widehat B = \widehat C = {90^o}\) và AB // CD
  • C
    AB = CD = AD = BC
  • D
    AB // CD; AB = CD; AC = BD

Đáp án : C

Phương pháp giải :
Xét các trường hợp và xem xét trường hợp nào sai.
Lời giải chi tiết :

+ Ta thấy AB = CD = AD = BC thì ABCD chỉ có bốn cạnh bằng nhau nên ABCD chưa chắc là hình chữ nhật .

Nếu \(\widehat A = \widehat B = \widehat C = {90^o}\) thì tứ giác ABCD có ba góc vuông nên ABCD là hình chữ nhật (do dấu hiệu tứ giác có 3 góc vuông).

+ Nếu \(\widehat A = \widehat B = \widehat C = {90^o}\) và AB // CD thì tứ giác ABCD có AD // BC; AB // CD nên ABCD là hình bình hành, lại có Â = 900 nên ABCD là hình chữ nhật. (do dấu hiệu hình bình hành có một góc vuông)

+ Nếu AB // CD; AB = CD và AC = BD thì ABCD là hình bình hành (do có cặp cạnh đối AB; CD song song và bằng nhau), lại có hai đường chéo bằng nhau AC = BD nên ABCD là hình chữ nhật (do dấu hiệu hình bình hành có hai đường chéo bằng nhau).

Câu 10 :

Hãy chọn câu đúng. Cho ΔABC với M thuộc cạnh BC. Từ M vẽ ME song song với AB và MF song song với AC. Hãy xác định điều kiện của ΔABC để tứ giác AEMF là hình chữ nhật.

  • A
    ΔABC vuông tại A
  • B
    ΔABC vuông tại B
  • C
    ΔABC vuông tại C
  • D
    ΔABC đều

Đáp án : A

Phương pháp giải :
Chứng minh AEMF là hình bình hành và thêm điều kiện có 1 góc vuông để được hình chữ nhật
Lời giải chi tiết :

Từ giả thiết ta có ME // AF; MF // AE nên tứ giác AEMF là hình bình hành (dhnb).

Để hình bình hành AEMF là hình chữ nhật thì \(\widehat {{\rm{EAF}}} = {90^o}\) nên tam giác ABC vuông tại A.

Câu 11 :

Độ dài đường trung tuyến ứng với cạnh huyền của tam giác vuông có các cạnh góc vuông bằng 6cm, 8cm là:

  • A
    10cm
  • B
    9cm
  • C
    5cm
  • D
    8cm

Đáp án : C

Phương pháp giải :
Tính độ dài cạnh huyền BC và sử dụng tính chất đường trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền.
Lời giải chi tiết :

Áp dụng định lý Pytago cho tam giác ABC vuông tại A ta có:

BC2 = AC2 + AB2 hay BC2 = 62 + 82

⇒ BC2 = 100. Suy ra BC = 10 (cm)

Do AH là đường trung tuyến ứng với cạnh huyền BC nên

AH = BC : 2 = 10 : 2 = 5cm

Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.

Câu 12 :

Cho tam giác ABC vuông tại A, điểm M thuộc cạnh huyền BC. Gọi D, E lần lượt là chân đường vuông góc kẻ từ M đến AB, AC. Điểm M ở vị trí nào trên BC thì DE có độ dài nhỏ nhất?

  • A
    M là hình chiếu của A trên BC
  • B
    M là trung điểm của BC
  • C
    M trùng với B
  • D
    Đáp án khác

Đáp án : A

Phương pháp giải :
Chứng minh ADME là hình chữ nhật và sử dụng tính chất của hình chữ nhật để tìm vị trí của điểm M.
Lời giải chi tiết :

Xét tứ giác ADME có \(\widehat A = \widehat {A{\rm{D}}M} = \widehat {A{\rm{E}}M} = {90^o}\) nên ADME là hình chữ nhật.

Vì ADME là hình chữ nhật nên AM = DE (tính chất)

Để DE nhỏ nhất thì AM nhỏ nhất mà AM nhỏ nhất khi M là hình chiếu của A trên BC

Từ đó DE nhỏ nhất khi M là hình chiếu của A trên BC.

Câu 13 :

Cho tam giác \(ABC\), đường cao \(AH\). \(I\) là trung điểm của \(AC\), \(E\) đối xứng với \(H\)qua \(I\). Tứ giác \(AHCE\) là hình gì?

  • A
    Hình thang.
  • B
    Hình thang cân.
  • C
    Hình thang vuông.
  • D
    Hình chữ nhật.

Đáp án : D

Phương pháp giải :
Dựa vào dấu hiệu nhận biết của hình chữ nhật
Lời giải chi tiết :

Tứ giác \(AHCE\) là hình bình hành vì \(IA = IC\), \(IH = IE\).

Mà \(\widehat H = {90^o}\)\( \Rightarrow AHCE\) là hình chữ nhật.

Hình bình hành có một góc vuông là hình chữ nhật

Câu 14 :

Hình chữ nhật \(ABCD\) có \(O\) là giao điểm của hai đường chéo. Biết \(\widehat {AOD} = {50^o}\), tính số đo \(\widehat {ABO}\).

  • A
    \({50^o}\).
  • B
    \({25^o}\).
  • C
    \({90^o}\).
  • D
    \({130^o}\).

Đáp án : B

Phương pháp giải :
Dựa vào tính chất của hình chữ nhật
Lời giải chi tiết :

Ta có: \(\widehat {AOB} = {180^o} - \widehat {AOD} = {130^o}\) (hai góc kề bù)

Theo tính chất hình chữ nhật ta có \(OA = OB\) \( \Rightarrow \Delta OAB\) cân tại \(O\)

\( \Rightarrow \widehat {ABO} = \widehat {BAO} = \frac{{{{180}^o} - {{130}^o}}}{2} = {25^o}\).

Câu 15 :

Cho tam giác \(ABC\) vuông tại \(A\). Gọi \(M\), N, \(P\) lần lượt là trung điểm thuộc các cạnh \(AB\), AC, \(BC\) và \(MP = \frac{{AC}}{2}\), \(MP\;{\rm{//}}\;AN\).Tứ giác \(AMPN\) là hình gì?

  • A
    Hình thang.
  • B
    Hình thang cân.
  • C
    Hình chữ nhật.
  • D
    Hình thang vuông.

Đáp án : C

Phương pháp giải :
Chứng minh tứ giác AMPN là hình bình hành có \(\widehat A = {90^o}\) nên tứ giác AMPN là hình chữ nhật.
Lời giải chi tiết :

Xét tam giác ABC ta có: \(MP = \frac{{AC}}{2}\), \(MP\;{\rm{//}}\;AN\)

Mà \(AN = \frac{{AC}}{2}\) \( \Rightarrow MP\;{\rm{ = }}\;AN\)

\( \Rightarrow \) Tứ giác \(AMPN\) là hình bình hành

Mà \(\widehat A = {90^o}\)\( \Rightarrow AMPN\) là hình chữ nhật.

Câu 16 :

Cho hình chữ nhật \(ABCD\). \(E\), \(F\), \(G\), \(H\) là trung điểm của các cạnh \(AB\), \(BC\), \(CD\), \(DA\) và \(EF\;\;{\rm{//}}\;\;AC\), \(GH\;\;{\rm{//}}\;\;AC\);\(EH\;\;{\rm{//}}\;\;BD\),\(FG\;\;{\rm{//}}\;\;BD\) Tứ giác \(EFGH\) là hình gì?

  • A
    Hình chữ nhật.
  • B
    Hình thang cân.
  • C
    Hình thang.
  • D
    Hình bình hành.

Đáp án : D

Phương pháp giải :
Chứng minh tứ giác EFGH là hình bình hành vì có các cặp cạnh đối song song với nhau.
Lời giải chi tiết :

Tứ giác \(EFGH\) là hình bình hành vì

+ \(EF\;\;{\rm{//}}\;\;GH\) (\(EF\;\;{\rm{//}}\;\;AC\), \(GH\;\;{\rm{//}}\;\;AC\))

+ \(EH\;\;{\rm{//}}\;\;FG\) (\(EH\;\;{\rm{//}}\;\;BD\),\(FG\;\;{\rm{//}}\;\;BD\))

Câu 17 :

Cho tam giác ABC vuông cân tại A, AC = 6cm, điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là các chân đường vuông góc kẻ từ M đến AB, AC. Chu vi của tứ giác ADME bằng:

  • A
    6cm
  • B
    36cm
  • C
    18cm
  • D
    12cm

Đáp án : D

Phương pháp giải :
Chứng minh tứ giác ADME là hình chữ nhật từ đó tính chu vi của hình chữ nhật.
Lời giải chi tiết :

+ Xét tứ giác ADME có \(\widehat A = \widehat B = \widehat C = \widehat D = {90^o}\) nên ADME là hình chữ nhật

+ Xét tam giác DMB có \(\widehat B = {45^o}\) (do tam giác ABC vuông cân) nên tam giác BDM vuông cân tại D. Do đó DM = BD

+ Do ADME là hình chữ nhật nên chu vi ADME là:

(AD + DM).2 = (AD + BD).2 = 6.2 = 12 cm

Vậy chu vi ADME là 12cm

Câu 18 :

Cho tam giác ABC với ba trung tuyến AI, BD, CE đồng quy tại G sao cho ED // BC; \(E{\rm{D}} = \frac{1}{2}BC\) . M và N lần lượt là các điểm của GC và GB và MN // BC; \(MN = \frac{1}{2}BC\); Tứ giác MNED là hình gì?

  • A
    Hình chữ nhật
  • B
    Hình bình hành
  • C
    Hình thang cân
  • D
    Hình thang vuông

Đáp án : B

Phương pháp giải :
Chứng minh tứ giác MNED có MN // ED, MN = ED nên tứ giác MNED là hình bình hành
Lời giải chi tiết :

Xét tam giác ABC : ED // BC; \(E{\rm{D}} = \frac{1}{2}BC\) (1)

+ Xét tam giác GBC có : MN // BC; \(MN = \frac{1}{2}BC\) (2)

Từ (1), (2) ⇒ MN // ED, MN = ED nên tứ giác MNED là hình bình hành (dấu hiệu nhận biết)

Câu 19 :

Cho hình thang vuông \(ABCD\) có \(\widehat A = \widehat D = {90^o}\) . Gọi \(M\) là trung điểm của \(AC\) và \(BM{\rm{ }} = {\rm{ }}\frac{1}{2}AC\) . Khẳng định nào sau đây sai

  • A
    \(AC = BD\).
  • B
    Tứ giác \(ABCD\) là hình chữ nhật.
  • C
    \(M\) là trung điểm của \(BD\).
  • D
    \(AB = AD\).

Đáp án : D

Phương pháp giải :
Sử dụng tính chất của hình chữ nhật
Lời giải chi tiết :

Xét \(\Delta ABC\) có \(BM\) là đường trung tuyến ứng với cạnh \(AC\) mà \(BM{\rm{ }} = {\rm{ }}\frac{1}{2}AC\)\( \Rightarrow \Delta ABC\) vuông tại \(B\)

Tứ giác \(ABCD\) có \(\widehat A = \widehat D = \widehat B = {90^o}\)\( \Rightarrow \) Tứ giác \(ABCD\) là hình chữ nhật.

Suy ra: \(AC = BD\) và \(M\) là trung điểm của \(BD\)

Vậy D sai.

Câu 20 :

Cho tứ giác \(ABCD\). \(E\), \(F\), \(G\), \(H\) là trung điểm của các cạnh \(AB\), \(BC\), \(CD\), \(DA\)và \(EF\;\;{\rm{//}}\;\;AC\), \(GH\;\;{\rm{//}}\;\;AC\), \(EH\;\;{\rm{//}}\;\;BD\), \(FG\;\;{\rm{//}}\;\;BD\). Tứ giác \(ABCD\) cần thêm điều kiện nào sau đây để tứ giác \(EFGH\) là hình chữ nhật?

  • A
    \(AC = BD\) .
  • B
    \(AC \bot BD\).
  • C
    \(AB = BC\).  
  • D
    \(AB\;{\rm{//}}\;CD\) .

Đáp án : B

Phương pháp giải :
Dựa vào dấu hiệu nhận biết của hình chữ nhật
Lời giải chi tiết :

Tứ giác \(EFGH\) là hình bình hành vì

+ \(EF\;\;{\rm{//}}\;\;GH\) (\(EF\;\;{\rm{//}}\;\;AC\), \(GH\;\;{\rm{//}}\;\;AC\))

+ \(EH\;\;{\rm{//}}\;\;FG\) (\(EH\;\;{\rm{//}}\;\;BD\), \(FG\;\;{\rm{//}}\;\;BD\))

Để hình bình hành \(EFGH\) là hình chữ nhật cần thêm điều kiện \(\widehat E = {90^o}\)

\( \Rightarrow EF \bot EH\) \( \Leftrightarrow AC \bot BD\)

close