Trắc nghiệm Bài 3: Hằng đẳng thức đáng nhớ Toán 8 Cánh diềuĐề bài
Câu 1 :
Chọn câu đúng?
Câu 2 :
Khai triển \({x^2} - {y^2}\) ta được
Câu 3 :
Đẳng thức nào sau đây là hằng đẳng thức?
Câu 4 :
Biểu thức \(4{x^2} - 4x + 1\) được viết dưới dạng hằng đẳng thức bình phương của một hiệu là
Câu 5 :
Viết biểu thức \(25{x^2} + 20xy + 4{y^2}\) dưới dạng bình phương của một tổng.
Câu 6 :
Cho biết \({99^2} = {a^2} - 2ab + {b^2}\) với \(a,\,b \in \mathbb{R}\) . Khi đó
Câu 7 :
Điền vào chỗ chấm trong khai triển hằng đẳng thức sau: \({\left( {... + 1} \right)^2} = \frac{1}{4}{x^2}{y^2} + xy + 1\) .
Câu 8 :
Rút gọn biểu thức \(P = {\left( {3x - 1} \right)^2} - 9x\left( {x + 1} \right)\) ta được
Câu 9 :
Viết \({101^2} - {99^2}\) dưới dạng tích hoặc bình phương của một tổng (hiệu).
Câu 10 :
Tìm \(x\) biết \(\left( {x - 6} \right)\left( {x + 6} \right) - {\left( {x + 3} \right)^2} = 9\)
Câu 11 :
Có bao nhiêu giá trị \(x\) thỏa mãn \({\left( {3x - 4} \right)^2} - {\left( {2x - 1} \right)^2} = 0\) .
Câu 12 :
So sánh \(P = 2015.2017.a\) và \(Q = {2016^2}.a \left( {a > 0} \right)\) .
Câu 13 :
Cho biết \({\left( {3x-1} \right)^2}\; + 2{\left( {x + 3} \right)^2}\; + 11\left( {1 + x} \right)\left( {1-x} \right) = ax + b\) . Khi đó
Câu 14 :
Cho \(M = \frac{{{{\left( {x + 5} \right)}^2} + {{\left( {x - 5} \right)}^2}}}{{{x^2} + 25}}; N = \frac{{{{\left( {2x + 5} \right)}^2} + {{\left( {5x - 2} \right)}^2}}}{{{x^2} + 1}}\) . Tìm mối quan hệ giữa \(M, N\) ?
Câu 15 :
Cho biểu thức \(T = {x^2} + 20x + 101\) . Khi đó
Câu 16 :
Cho biểu thức \(\;N = 2{\left( {x-1} \right)^2}\;-4{\left( {3 + x} \right)^2}\; + 2x\left( {x + 14} \right)\) . Giá trị của biểu thức \(\;N\) khi \(\;x = 1001\) là
Câu 17 :
Giá trị lớn nhất của biểu thức \(\;Q = 8-8x-{x^2}\) là
Câu 18 :
Biết giá trị \(x = a \left( {a > 0} \right)\) thỏa mãn biểu thức \(\;{\left( {2x + 1} \right)^2}\;-{\left( {x + {{ 5}}} \right)^2}\; = 0\) , bội của \(a\) là
Câu 19 :
Cho cặp số \(\left( {x;y} \right)\) để biểu thức \({{P }} = {x^2}-8x + {y^2} + 2y + 5\) có giá trị nhỏ nhất. Khi đó tổng \(x + 2y\) bằng
Câu 20 :
Giá trị nhỏ nhất của biểu thức \(A = {\left( {3x - 1} \right)^2} + {\left( {3x + 1} \right)^2} + 2\left( {9{x^2} + 7} \right)\) đạt tại \(x = b\) . Khi đó, căn bậc hai số học của \(b\) là
Câu 21 :
Cho biểu thức \(M = {79^2} + {77^2} + {75^2} + ... + {3^2} + {1^2}\) và \(N = {78^2} + {76^2} + {74^2} + ... + {4^2} + {2^2}\) . Tính giá trị của biểu thức \(\frac{{M - N}}{2}\) .
Câu 22 :
Cho đẳng thức \({\left( {a + b + c} \right)^2} = 3\left( {ab + bc + ca} \right)\) . Khi đó
Câu 23 :
Giá trị nhỏ nhất của biểu thức \(T = \left( {{x^2} + 4x + 5} \right)\left( {{x^2} + 4x + 6} \right) + 3\) là
Câu 24 :
Chọn câu đúng?
Câu 25 :
Viết biểu thức \({x^3}\; + {{ 3}}{x^2}\; + {{ 3}}x + {{ 1}}\) dưới dạng lập phương của một tổng
Câu 26 :
Khai triển hằng đẳng thức \({\left( {x - 2} \right)^3}\) ta được
Câu 27 :
Hằng đẳng thức có được bằng cách thực hiện phép nhân \(\left( {A - B} \right).{\left( {A - B} \right)^2}\) là
Câu 28 :
Cho \(A + \frac{3}{4}{x^2} - \frac{3}{2}x + 1 = {\left( {B + 1} \right)^3}\). Khi đó
Câu 29 :
Tính nhanh: \({23^3} - {9.23^2} + 27.23 - 27\).
Câu 30 :
Viết biểu thức sau dưới dạng lập phương của một tổng hoặc một hiệu:\(8-{{ 36}}x + {{ 54}}{x^2}\;-{{ 27}}{x^3}\).
Câu 31 :
Giá trị của biểu thức \({x^3}\;-6{x^2}y + 12x{y^2}\;-8{y^3}\;\)tại \(x = 2021\) và \(y = 1010\) là
Câu 32 :
Tìm \(x\) biết \({x^3}\;-12{x^2}\; + 48x-64 = 0\)
Câu 33 :
Cho biểu thức \(H = \left( {x + 5} \right)({x^2}\;-5x + 25)-{\left( {2x + 1} \right)^3}\; + 7{\left( {x-1} \right)^3}\;-3x\left( { - 11x + 5} \right)\). Khi đó
Câu 34 :
Tính giá trị của biểu thức \(M = {\left( {x + 2y} \right)^3} - 6{\left( {x + 2y} \right)^2} + 12\left( {x + 2y} \right) - 8\) tại\(x = 20;\,y = 1\) .
Câu 35 :
Cho hai biểu thức \(P = {\left( {4x + 1} \right)^3}\;-\left( {4x + 3} \right)\left( {16{x^2}\; + 3} \right){\rm{, }}Q = {\left( {x-2} \right)^3}\;-x\left( {x + 1} \right)\left( {x-1} \right) + 6x\left( {x-3} \right) + 5x\). Tìm mối quan hệ giữa hai biểu thức \(P,\,Q\)?
Câu 36 :
Rút gọn biểu thức \(P = 8{x^3}\;-12{x^2}y + 6x{y^2}\;-{y^3}\; + 12{x^2}\;-12xy + 3{y^2}\; + 6x-3y + 11\) ta được
Câu 37 :
Cho biết \(Q = {\left( {2x-{\rm{ 1}}} \right)^3}\;-{\rm{ 8}}x\left( {x + 1} \right)\left( {x-1} \right) + {\rm{ 2}}x\left( {6x - 5} \right) = ax - b\,\,\left( {a,\,b \in \mathbb{Z}} \right)\). Khi đó
Câu 38 :
Biết giá trị \(x = a\,\,\) thỏa mãn biểu thức \(\;{(x + 1)^3} - {(x - 1)^3} - 6{(x - 1)^2} = 20\), ước của \(a\) là
Câu 39 :
Cho hai biểu thức \(\;P = {\left( {4x + 1} \right)^3}\;-\left( {4x + 3} \right)(16{x^2}\; + 3);\,\,Q = {\left( {x-2} \right)^3}\;-x\left( {x + 1} \right)\left( {x-1} \right) + 6x\left( {x-3} \right) + 5x\). So sánh \(P\) và \(Q\)?
Câu 40 :
Cho \(\;2x-y = 9\). Giá trị của biểu thức \(\;A = 8{x^3}\;-12{x^2}y + 6x{y^2}\;-{y^3}\; + 12{x^2}\;-12xy + 3{y^2}\; + 6x-3y + 11\) là
Câu 41 :
Giá trị của biểu thức \(Q = {a^3} - {b^3}\) biết \(a - b = 4\) và \(ab = - 3\) là
Câu 42 :
Biểu thức \({(a + b + c)^3}\)được phân tích thành
Câu 43 :
Cho \(\;a + b + c = 0\). Giá trị của biểu thức \(\;B = {a^3}\; + {b^3}\; + {c^3}\;-3abc\;\) là
Câu 44 :
Chọn câu sai?
Câu 45 :
Viết biểu thức \((x - 3y)\left( {{x^2} + 3xy + 9{y^2}} \right)\) dưới dạng hiệu hai lập phương
Câu 46 :
Điền vào chỗ trống \({x^3} + 512 = (x + 8)\left( {{x^2} - \left[ {} \right] + 64} \right)\)
Câu 47 :
Rút gọn biểu thức \(A = {x^3} + 12 - (x + 2)\left( {{x^2} - 2x + 4} \right)\) ta được giá trị của A là
Câu 48 :
Giá trị của biểu thức \(125 + (x - 5)({x^3} + 5x + 25)\) với x = -5 là
Câu 49 :
Có bao nhiêu cách điền vào dấu ? để biểu thức \((x - 2).?\) là một hằng đẳng thức?
Câu 50 :
Viết biểu thức \(8 + {(4x - 3)^3}\) dưới dạng tích
Câu 51 :
Thực hiện phép tính \({(x + y)^3} - {\left( {x - 2y} \right)^3}\)
Câu 52 :
Tìm \(x\) biết \((x + 3)({x^2} - 3x + 9) - x({x^2} - 3) = 21\)
Câu 53 :
Viết biểu thức \({a^6} - {b^6}\) dưới dạng tích
Câu 54 :
Cho \(x + y = 1\). Tính giá trị biểu thức \(A = {x^3} + 3xy + {y^3}\)
Câu 55 :
Cho x – y = 2. Tính giá trị biểu thức \(A = {x^3} - 6xy - {y^3}\)
Câu 56 :
Cho \(A = {1^3} + {3^3} + {5^3} + {7^3} + {9^3} + {11^3}\). Khi đó
Câu 57 :
Rút gọn biểu thức \(\left( {a - b + 1} \right)\left[ {{a^2} + {b^2} + ab - (a + 2b) + 1} \right] - ({a^3} + 1)\)
Câu 58 :
Cho \(a,b,m\) và \(n\) thỏa mãn các đẳng thức: \(a + b = m\) và \(a - b = n\). Giá trị của biểu thức \(A = {a^3} + {b^3}\) theo m và n.
Câu 59 :
Phân tích đa thức sau thành nhân tử \({x^{4\;}} + {x^3}y - x{y^{3\;}} - {y^4}\)
Câu 60 :
Rút gọn biểu thức \({\left( {x - y} \right)^{3\;}} + \left( {x - y} \right)({x^{2\;}} + xy + {y^2}) + 3({x^2}y - x{y^2})\)
Câu 61 :
Cho \(x,y,a\) và \(b\) thỏa mãn các đẳng thức: \(x - y = a - b\,\,\,(1)\) và \({x^2} + {y^2} = {a^2} + {b^2}\,\,\,(2)\). Biểu thức \({x^3} - {y^3} = ?\)
Câu 62 :
Với mọi a, b, c thỏa mãn a + b + c = 0 thì giá trị của biểu thức \({a^3} + {b^3} + {c^3} - 3abc\) là:
Câu 63 :
Viết biểu thức sau dưới dạng tích: \(A = {(3 - x)^3} + {(x - y)^3} + {(y - 3)^3}\)
Lời giải và đáp án
Câu 1 :
Chọn câu đúng?
Đáp án : A Phương pháp giải :
Học thuộc hằng đẳng thức bình phương của một hiệu: \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)
Lời giải chi tiết :
\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)
Câu 2 :
Khai triển \({x^2} - {y^2}\) ta được
Đáp án : A Phương pháp giải :
Học thuộc hằng đẳng thức hiệu hai bình phương: \({x^2} - {y^2}\) \( = \left( {x - y} \right)\left( {x + y} \right)\)
Lời giải chi tiết :
\({x^2} - {y^2}\) \( = \left( {x - y} \right)\left( {x + y} \right)\)
Câu 3 :
Đẳng thức nào sau đây là hằng đẳng thức?
Đáp án : A Phương pháp giải :
Nhớ khái niệm hằng đẳng thức: Hằng đẳng thức là đẳng thức mà hai vế luôn cùng nhận một giá trị khi thay các chữ trong đẳng thức bằng các số tùy ý.
Lời giải chi tiết :
Loại đáp án B, C, D vì khi ta thay \(x = 2\) thì hai vế của đẳng thức không bằng nhau.
Câu 4 :
Biểu thức \(4{x^2} - 4x + 1\) được viết dưới dạng hằng đẳng thức bình phương của một hiệu là
Đáp án : A Phương pháp giải :
Áp dụng hằng đẳng thức bình phương của một hiệu: \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)
Lời giải chi tiết :
\(4{x^2} - 4x + 1 = {\left( {2x} \right)^2} - 2.2x.1 + {1^2} = {\left( {2x - 1} \right)^2}\)
Câu 5 :
Viết biểu thức \(25{x^2} + 20xy + 4{y^2}\) dưới dạng bình phương của một tổng.
Đáp án : B Phương pháp giải :
Áp dụng hằng đẳng thức bình phương của một tổng: \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)
Lời giải chi tiết :
\(25{x^2} + 20xy + 4{y^2} = {\left( {5x} \right)^2} + 2.5x.2y + {\left( {2y} \right)^2} = {\left( {5x + 2y} \right)^2}\)
Câu 6 :
Cho biết \({99^2} = {a^2} - 2ab + {b^2}\) với \(a,\,b \in \mathbb{R}\) . Khi đó
Đáp án : B Phương pháp giải :
Áp dụng hằng đẳng thức bình phương của một hiệu: \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)
Lời giải chi tiết :
\({a^2} - 2ab + {b^2} = {\left( {a - b} \right)^2} = {\left( {100 - 1} \right)^2} = {99^2}\) suy ra \(a = 100,\,b = 1\)
Câu 7 :
Điền vào chỗ chấm trong khai triển hằng đẳng thức sau: \({\left( {... + 1} \right)^2} = \frac{1}{4}{x^2}{y^2} + xy + 1\) .
Đáp án : B Phương pháp giải :
Áp dụng hằng đẳng thức bình phương của một tổng: \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)
Lời giải chi tiết :
\(\frac{1}{4}{x^2}{y^2} + xy + 1 = {\left( {\frac{1}{2}xy} \right)^2} + 2.\frac{1}{2}xy.1 + {1^2} = {\left( {\frac{1}{2}xy + 1} \right)^2} \Rightarrow ... = \frac{1}{2}xy\)
Câu 8 :
Rút gọn biểu thức \(P = {\left( {3x - 1} \right)^2} - 9x\left( {x + 1} \right)\) ta được
Đáp án : B Phương pháp giải :
Áp dụng hằng đẳng thức bình phương của một hiệu: \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\) và phép nhân đơn thức với đa thức.
Lời giải chi tiết :
\(P = {\left( {3x - 1} \right)^2} - 9x\left( {x + 1} \right) \\= 9{x^2} - 6x + 1 - 9{x^2} - 9x \\= - 15x + 1\)
Câu 9 :
Viết \({101^2} - {99^2}\) dưới dạng tích hoặc bình phương của một tổng (hiệu).
Đáp án : B Phương pháp giải :
Áp dụng hằng đẳng thức hiệu hai bình phương: \({x^2} - {y^2}\) \( = \left( {x - y} \right)\left( {x + y} \right)\)
Lời giải chi tiết :
\({101^2} - {99^2} = \left( {101 - 99} \right)\left( {101 + 99} \right)\)
Câu 10 :
Tìm \(x\) biết \(\left( {x - 6} \right)\left( {x + 6} \right) - {\left( {x + 3} \right)^2} = 9\)
Đáp án : C Phương pháp giải :
Áp dụng hai hằng đẳng thức: \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}; \\{A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\) đưa về dạng tìm \(x\) đã biết (chú ý đằng trước ngoặc đơn có dấu trừ, khi phá ngoặc phải đổi dấu toàn bộ các hạng tử trong ngoặc). Lời giải chi tiết :
Ta có \(\begin{array}{l}\left( {x - 6} \right)\left( {x + 6} \right) - {\left( {x + 3} \right)^2} = 9 \\{x^2} - {6^2} - \left( {{x^2} + 6x + 9} \right) = 9\\ {x^2} - 36 - {x^2} - 6x - 9 = 9\\ - 6x = 9 + 9 + 36 \\ - 6x = 54\\ x = - 9\end{array}\)
Câu 11 :
Có bao nhiêu giá trị \(x\) thỏa mãn \({\left( {3x - 4} \right)^2} - {\left( {2x - 1} \right)^2} = 0\) .
Đáp án : C Phương pháp giải :
Áp dụng hằng đẳng thức: \({A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\) đưa về dạng tìm \(x\) đã biết.
Lời giải chi tiết :
Ta có Suy ra x - 3 = 0 hoặc 5x - 5 = 0 Vậy có 2 giá trị x thỏa mãn.
Câu 12 :
So sánh \(P = 2015.2017.a\) và \(Q = {2016^2}.a \left( {a > 0} \right)\) .
Đáp án : C Phương pháp giải :
Biến đổi biểu thức \(P\) để sử dụng hằng đẳng thức: \({A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\) rồi so sánh (chú ý điều kiện \(a > 0\) ).
Lời giải chi tiết :
Ta có \(P = 2015.2017.a = \left( {2016 - 1} \right).\left( {2016 + 1} \right).a = \left( {{{2016}^2} - 1} \right).a\)
Vì \({2016^2} - 1 < {2016^2} \Rightarrow \left( {{{2016}^2} - 1} \right).a < {2016^2}.a \left( {a > 0} \right)\) \( \Rightarrow 2015.2017.a < {2016^2}.a\) hay \(P < Q\)
Câu 13 :
Cho biết \({\left( {3x-1} \right)^2}\; + 2{\left( {x + 3} \right)^2}\; + 11\left( {1 + x} \right)\left( {1-x} \right) = ax + b\) . Khi đó
Đáp án : C Phương pháp giải :
Sử dụng các hằng đẳng thức: \({A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\) ,\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\) ,\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) để rút gọn 2 biểu thức đã cho.
Lời giải chi tiết :
Ta có
\(\begin{array}{l} {\left( {3x-1} \right)^2}\; + 2{\left( {x + 3} \right)^2}\; + 11\left( {1 + x} \right)\left( {1-x} \right)\\\begin{array}{*{20}{l}}{ = {{\left( {3x} \right)}^2}\;-2.3x.1 + {1^2}\; + 2\left( {{x^2}\; + 6x + 9} \right) + 11\left( {1-{x^2}} \right)}\\{ = 9{x^2}\;-6x + 1 + 2{x^2}\; + 12x + 18 + 11-11{x^2}\;}\\\begin{array}{l} = \left( {9{x^2}\; + 2{x^2}\;-11{x^2}} \right) + \left( { - 6x + 12x} \right){{ + }}\left( {1 + 18 + 11} \right)\\ = 6x + 30\end{array}\end{array}\end{array}\) \( \Rightarrow a = 6; b = 30\)
Câu 14 :
Cho \(M = \frac{{{{\left( {x + 5} \right)}^2} + {{\left( {x - 5} \right)}^2}}}{{{x^2} + 25}}; N = \frac{{{{\left( {2x + 5} \right)}^2} + {{\left( {5x - 2} \right)}^2}}}{{{x^2} + 1}}\) . Tìm mối quan hệ giữa \(M, N\) ?
Đáp án : C Phương pháp giải :
Sử dụng hai hằng đẳng thức: \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) và \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\) để rút gọn biểu thức \(M,N\) .
Lời giải chi tiết :
Ta có \(M = \frac{{{{\left( {x + 5} \right)}^2} + {{\left( {x - 5} \right)}^2}}}{{{x^2} + 25}} = \frac{{{x^2} + 10x + 25 + {x^2} - 10x + 25}}{{{x^2} + 25}} = \frac{{2{x^2} + 50}}{{{x^2} + 25}} = \frac{{2\left( {{x^2} + 25} \right)}}{{{x^2} + 25}} = 2\)
\(N = \frac{{{{\left( {2x + 5} \right)}^2} + {{\left( {5x - 2} \right)}^2}}}{{{x^2} + 1}} = \frac{{4{x^2} + 20x + 25 + 25{x^2} - 20x + 4}}{{{x^2} + 1}} = \frac{{29{x^2} + 29}}{{{x^2} + 1}} = \frac{{29\left( {{x^2} + 1} \right)}}{{{x^2} + 1}} = 29\) Ta thấy: \(29 = 14.2 + 1 \Rightarrow N = 14M + 1\)
Câu 15 :
Cho biểu thức \(T = {x^2} + 20x + 101\) . Khi đó
Đáp án : C Phương pháp giải :
Biến đổi biểu thức \(T\) để sử dụng hằng đẳng thức: \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) rồi đánh giá biểu thức\(T = {\left( {A + B} \right)^2} + m \ge m \left( {{{\left( {A + B} \right)}^2} \ge 0} \right)\) .
Lời giải chi tiết :
Ta có
\(\begin{array}{l}T = {x^2} + 20x + 101 = \left( {{x^2} + 2.10x + 100} \right) + 1 = {\left( {x + 10} \right)^2} + 1 \ge 1 \left( {{{\left( {x + 10} \right)}^2} \ge 0, \forall x} \right)\\ \Rightarrow T \ge 1\end{array}\)
Câu 16 :
Cho biểu thức \(\;N = 2{\left( {x-1} \right)^2}\;-4{\left( {3 + x} \right)^2}\; + 2x\left( {x + 14} \right)\) . Giá trị của biểu thức \(\;N\) khi \(\;x = 1001\) là
Đáp án : C Phương pháp giải :
Sử dụng hai hằng đẳng thức: \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) ,\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\) và phép nhân đơn thức với đa thức rồi thu gọn đa thức.
Lời giải chi tiết :
Ta có
\(\begin{array}{l}\;N = 2{\left( {x-1} \right)^2}\;-4{\left( {3 + x} \right)^2}\; + 2x\left( {x + 14} \right)\\ \begin{array}{*{20}{l}}{ = 2\left( {{x^2}\;-2x + 1} \right)-4\left( {9 + 6x + {x^2}} \right) + 2{x^2}\; + 28x}\\{ = 2{x^2}\;-4x + 2-36-24x-4{x^2}\; + 2{x^2}\; + 28x}\\{ = \left( {2{x^2}\; + 2{x^2}\;-4{x^2}} \right) + \left( { - 4x-24x + 28x} \right) + 2-36}\\{ = - 34}\end{array}\end{array}\)
Câu 17 :
Giá trị lớn nhất của biểu thức \(\;Q = 8-8x-{x^2}\) là
Đáp án : C Phương pháp giải :
Sử dụng hằng đẳng thức: \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) đưa biểu thức\(Q\) về dạng \(m - {\left( {A + B} \right)^2}\) rồi đánh giá: \(m - {\left( {A + B} \right)^2} \le m \left( { - {{\left( {A + B} \right)}^2} \le 0} \right)\) (chú ý đổi dấu để được hằng đẳng thức cần dùng).
Dấu = xảy ra khi \(A + B = 0\) . Lời giải chi tiết :
Ta có \(\;Q = 8-8x-{x^2} = -{x^2}-8x - 16 + 16 + 8 = - \left( {{x^2} + 8x + 16} \right) + 24 = - {\left( {x + 4} \right)^2} + 24\) Vì \({\left( {x + 4} \right)^2} \ge 0\) với mọi giá trị x nên \( - {\left( {x + 4} \right)^2} \le 0 \) với mọi giá trị x . Do đó \(- {\left( {x + 4} \right)^2} + 24 \le 24\) với mọi x Dấu = xảy ra khi \(x + 4 = 0\) hay \( x = - 4\) . Vậy giá trị lớn nhất của biểu thức Q là 24 khi \(x = - 4\) .
Câu 18 :
Biết giá trị \(x = a \left( {a > 0} \right)\) thỏa mãn biểu thức \(\;{\left( {2x + 1} \right)^2}\;-{\left( {x + {{ 5}}} \right)^2}\; = 0\) , bội của \(a\) là
Đáp án : C Phương pháp giải :
Sử dụng hằng đẳng thức: \({A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\) đưa về bài toán tìm \(x\) (chú ý điều kiện \(a > 0\) )
Lời giải chi tiết :
Ta có
\(\begin{array}{l}\;{\left( {2x + 1} \right)^2}\;-{\left( {x + {{ 5}}} \right)^2}\; = 0 \Leftrightarrow \left[ {\left( {2x + 1} \right) - \left( {x + {{ 5}}} \right)} \right]\left[ {\left( {2x + 1} \right) + \left( {x + {{ 5}}} \right)} \right] = 0\\ \Leftrightarrow \left( {2x + 1 - x - 5} \right)\left( {2x + 1 + x + 5} \right) = 0\\ \Leftrightarrow \left( {x - 4} \right)\left( {3x + 6} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 4 = 0\\3x + 6 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 4\\3x = - 6\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 4\left( {TM} \right)\\x = - 2\left( L \right)\end{array} \right.\end{array}\) \( \Rightarrow a = 4\) . Vậy bội của 4 là \(24\) .
Câu 19 :
Cho cặp số \(\left( {x;y} \right)\) để biểu thức \({{P }} = {x^2}-8x + {y^2} + 2y + 5\) có giá trị nhỏ nhất. Khi đó tổng \(x + 2y\) bằng
Đáp án : C Phương pháp giải :
Biến đổi biểu thức về dạng: \({\left( {A + B} \right)^2} + {\left( {C + D} \right)^2} + m\) rồi đánh giá: \({\left( {A + B} \right)^2} + {\left( {C + D} \right)^2} + m \ge m\)
Dấu = xảy ra khi \({\left( {A + B} \right)^2} = 0;{\left( {C + D} \right)^2} = 0 \Leftrightarrow A = - B;C = - D\) . Giá trị nhỏ nhất của biểu thức là \(m\) . Lời giải chi tiết :
Ta có
\({{P }} = {x^2}-8x + {y^2} + 2y + 5 = \left( {{x^2}-8x + 16} \right) + \left( {{y^2} + 2y + 1} \right) - 12 = {\left( {x - 4} \right)^2} + {\left( {y + 1} \right)^2} - 12\) Vì \({\left( {x - 4} \right)^2} \ge 0\forall x;{\left( {y + 1} \right)^2} \ge 0\forall y \Rightarrow {\left( {x - 4} \right)^2} + {\left( {y + 1} \right)^2} - 12 \ge - 12\forall x,y\) Dấu = xảy ra khi \(\left\{ \begin{array}{l}x - 4 = 0\\y + 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = - 1\end{array} \right.\) Giá trị nhỏ nhất của biểu thức P là \( - 12\) khi \(x = 4;y = - 1 \Rightarrow x + 2y = 4 + 2.\left( { - 1} \right) = 2\)
Câu 20 :
Giá trị nhỏ nhất của biểu thức \(A = {\left( {3x - 1} \right)^2} + {\left( {3x + 1} \right)^2} + 2\left( {9{x^2} + 7} \right)\) đạt tại \(x = b\) . Khi đó, căn bậc hai số học của \(b\) là
Đáp án : C Phương pháp giải :
Sử dụng hai hằng đẳng thức: \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\), \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\) đưa biểu thức \(Q\) về dạng \(m{x^2} + n\) rồi đánh giá: \(m{x^2} + n \ge m\left( {m{x^2} \ge 0\forall x} \right)\) (chú ý đổi dấu để được hằng đẳng thức cần dùng).
Dấu = xảy ra khi \(x = 0\) . Nhớ lại căn bậc hai số học của một số không âm \(a\) có dạng \(\sqrt a \) . Lời giải chi tiết :
Ta có
\(A = {\left( {3x - 1} \right)^2} + {\left( {3x + 1} \right)^2} + 2\left( {9{x^2} + 7} \right) = 9{x^2} - 6x + 1 + 9{x^2} + 6x + 1 + 18{x^2} + 14 = 36{x^2} + 16 \ge 16\left( {{x^2} \ge 0 \Rightarrow 36{x^2} \ge 0} \right)\) Dấu = xảy ra khi \(x = 0\), suy ra giá trị nhỏ nhất của biểu thức A là \(16\) khi \(x = 0 \Rightarrow b = 0\) . Vậy căn bậc hai số học của 0 là 0.
Câu 21 :
Cho biểu thức \(M = {79^2} + {77^2} + {75^2} + ... + {3^2} + {1^2}\) và \(N = {78^2} + {76^2} + {74^2} + ... + {4^2} + {2^2}\) . Tính giá trị của biểu thức \(\frac{{M - N}}{2}\) .
Đáp án : C Phương pháp giải :
Xét hiệu \(M - N\) rồi sử dụng hằng đẳng thức: \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\) .
Áp dụng công thức tính tổng n số tự nhiên liên tiếp \(1,2,3,...,n\) là \(\frac{{1 + n}}{2}.n\) Lời giải chi tiết :
Ta có
\(\begin{array}{l}M - N = \left( {{{79}^2} + {{77}^2} + {{75}^2} + ... + {3^2} + {1^2}} \right) - \left( {{{78}^2} + {{76}^2} + {{74}^2} + ... + {2^2}} \right)\\ = \left( {{{79}^2} - {{78}^2}} \right) + \left( {{{77}^2} - {{76}^2}} \right) + \left( {{{75}^2} - {{74}^2}} \right) + ... + \left( {{3^2} - {2^2}} \right) + {1^2}\\ = \left( {79 - 78} \right)\left( {79 + 78} \right) + \left( {77 - 76} \right)\left( {77 + 76} \right) + \left( {75 - 74} \right)\left( {75 + 74} \right) + ... + \left( {3 - 2} \right)\left( {3 + 2} \right) + 1\\ = 79 + 78 + 77 + 76 + 75 + 74 + ... + 3 + 2 + 1\\ = \frac{{79 + 1}}{2}.79 = 3160\\ \Rightarrow \frac{{M - N}}{2} = \frac{{3160}}{2} = 1580\end{array}\)
Câu 22 :
Cho đẳng thức \({\left( {a + b + c} \right)^2} = 3\left( {ab + bc + ca} \right)\) . Khi đó
Đáp án : C Phương pháp giải :
Biến đổi đẳng thức bằng cách sử dụng hằng đẳng thức:
\({\left( {A + B + C} \right)^2} = {A^2} + {B^2} + {C^2} + 2AB + 2BC + 2CA;{\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\) . Sử dụng \({A^2} + {B^2} + {C^2} \ge 0\forall A,B,C\) . Dấu = xảy ra khi \(A = B = C = 0\) Lời giải chi tiết :
Ta có
\(\begin{array}{l}{\left( {a + b + c} \right)^2} = 3\left( {ab + bc + ca} \right) \Leftrightarrow {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca\\ \Leftrightarrow {a^2} + {b^2} + {c^2} - ab - bc - ca = 0\\ \Leftrightarrow 2{a^2} + 2{b^2} + 2{c^2} - 2ab - 2bc - 2ca = 0\\ \Leftrightarrow \left( {{a^2} - 2ab + {b^2}} \right) + \left( {{b^2} - 2bc + {c^2}} \right) + \left( {{a^2} - 2ca + {c^2}} \right) = 0\\ \Leftrightarrow {\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {c - a} \right)^2} = 0\end{array}\) Ta thấy \({\left( {a - b} \right)^2} \ge 0,{\left( {b - c} \right)^2} \ge 0,{\left( {c - a} \right)^2} \ge 0\forall a,b,c\) Dấu = xảy ra khi \(\left\{ \begin{array}{l}{\left( {a - b} \right)^2} = 0\\{\left( {b - c} \right)^2} = 0\\{\left( {c - a} \right)^2} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a - b = 0\\b - c = 0\\c - a = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = b\\b = c\\c = a\end{array} \right. \Leftrightarrow a = b = c\) .
Câu 23 :
Giá trị nhỏ nhất của biểu thức \(T = \left( {{x^2} + 4x + 5} \right)\left( {{x^2} + 4x + 6} \right) + 3\) là
Đáp án : D Phương pháp giải :
Biến đổi biểu thức về dạng: \({\left( {A + B} \right)^2} + {\left( {C + D} \right)^2} + m\) rồi đánh giá: \({\left( {A + B} \right)^2} + {\left( {C + D} \right)^2} + m \ge m\)
Dấu = xảy ra khi \({\left( {A + B} \right)^2} = 0;{\left( {C + D} \right)^2} = 0 \Leftrightarrow A = - B;C = - D\) . Giá trị nhỏ nhất của biểu thức là \(m\) . Lời giải chi tiết :
Ta có \(\begin{array}{l}T = \left( {{x^2} + 4x + 5} \right)\left( {{x^2} + 4x + 6} \right) + 3\\ = \left( {{x^2} + 4x + 5} \right)\left( {{x^2} + 4x + 5 + 1} \right) + 3\\ = {\left( {{x^2} + 4x + 5} \right)^2} + \left( {{x^2} + 4x + 5} \right) + 3\\ = {\left( {{x^2} + 4x + 5} \right)^2} + \left( {{x^2} + 4x + 4} \right) + 4\\ = {\left( {{x^2} + 4x + 5} \right)^2} + {\left( {x + 2} \right)^2} + 4\end{array}\) Ta thấy \({\left( {x + 2} \right)^2} \ge 0\forall x \Rightarrow \left( {{x^2} + 4x + 5} \right) = \left( {{x^2} + 4x + 4 + 1} \right) = {\left( {x + 2} \right)^2} + 1 \ge 1\) \(\begin{array}{l} \Rightarrow {\left( {{x^2} + 4x + 5} \right)^2} + {\left( {x + 2} \right)^2} + 4 \ge 1 + 4\\ \Rightarrow T \ge 5\end{array}\) Dấu = xảy ra khi \(\left\{ \begin{array}{l}{x^2} + 4x + 5 = 1\\x + 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {x + 2} \right)^2} = 0\\x = - 2\end{array} \right. \Leftrightarrow x = - 2\) Vậy giá trị nhỏ nhất của T là \(5\) khi \(x = - 2\)
Câu 24 :
Chọn câu đúng?
Đáp án : A Phương pháp giải :
Học thuộc hằng đẳng thức lập phương của một tổng và một hiệu:
\({\left( {A + B} \right)^3}\; = {A^3}\; + 3{A^2}B + 3A{B^2}\; + {B^3}\); \({\left( {A\; - B} \right)^3}\; = {A^3}\; - 3{A^2}B + 3A{B^2}\; - {B^3}\) Lời giải chi tiết :
\({\left( {A + B} \right)^3}\; = {A^3}\; + 3{A^2}B + 3A{B^2}\; + {B^3}\); \({\left( {A\; - B} \right)^3}\; = {A^3}\; - 3{A^2}B + 3A{B^2}\; - {B^3}\)
Câu 25 :
Viết biểu thức \({x^3}\; + {{ 3}}{x^2}\; + {{ 3}}x + {{ 1}}\) dưới dạng lập phương của một tổng
Đáp án : A Phương pháp giải :
Áp dụng hằng đẳng thức lập phương của một tổng: \({\left( {A + B} \right)^3}\; = {A^3}\; + 3{A^2}B + 3A{B^2}\; + {B^3}\)
Lời giải chi tiết :
\({x^3}\; + {{ 3}}{x^2}\; + {{ 3}}x + {{ 1 = }}{\left( {x + 1} \right)^3}\)
Câu 26 :
Khai triển hằng đẳng thức \({\left( {x - 2} \right)^3}\) ta được
Đáp án : A Phương pháp giải :
Áp dụng hằng đẳng thức lập phương của một hiệu: \({\left( {A - B} \right)^3}\; = {A^3}\; - 3{A^2}B + 3A{B^2}\; - {B^3}\)
Lời giải chi tiết :
\({\left( {x - 2} \right)^3} = {x^3} - 3.{x^2}.2 + 3.x{.2^2} - {2^3} = {x^3} - 6{x^2} + 12x - 8\)
Câu 27 :
Hằng đẳng thức có được bằng cách thực hiện phép nhân \(\left( {A - B} \right).{\left( {A - B} \right)^2}\) là
Đáp án : A Phương pháp giải :
Áp dụng phép nhân hai lũy thừa cùng cơ số: \({x^m}.{x^n} = {x^{m + n}}\,\,\left( {m,\,n \in \mathbb{N}} \right)\)
Lời giải chi tiết :
\(\left( {A - B} \right).{\left( {A - B} \right)^2} = {\left( {A - B} \right)^{1 + 2}} = {\left( {A - B} \right)^3}\)
Câu 28 :
Cho \(A + \frac{3}{4}{x^2} - \frac{3}{2}x + 1 = {\left( {B + 1} \right)^3}\). Khi đó
Đáp án : B Phương pháp giải :
Áp dụng hằng đẳng thức lập phương của một tổng: \({\left( {A + B} \right)^3}\; = {A^3}\; + 3{A^2}B + 3A{B^2}\; + {B^3}\) và phép nhân hai đa thức rồi thu gọn đa thức.
Lời giải chi tiết :
\(\begin{array}{l}A + \frac{3}{4}{x^2} - \frac{3}{2}x + 1 = A + 3.{\left( { - \frac{1}{2}x} \right)^2}.1 + 3.\left( { - \frac{1}{2}x} \right){.1^2} + {1^3} = {\left( { - \frac{1}{2}x} \right)^3} + 3.{\left( { - \frac{1}{2}x} \right)^2}.1 + 3.\left( { - \frac{1}{2}x} \right){.1^2} + {1^3} = {\left( { - \frac{x}{2} + 1} \right)^3}\\ \Rightarrow A = {\left( { - \frac{1}{2}x} \right)^3} =- \frac{{{x^3}}}{8};\,B =- \frac{1}{2}x =- \frac{x}{2}\end{array}\)
Câu 29 :
Tính nhanh: \({23^3} - {9.23^2} + 27.23 - 27\).
Đáp án : B Phương pháp giải :
Áp dụng hằng đẳng thức: \({\left( {A + B} \right)^3}\; = {A^3}\; + 3{A^2}B + 3A{B^2}\; + {B^3}\).
Lời giải chi tiết :
\({23^3} - {9.23^2} + 27.23 - 27 \\= {23^3} - {3.23^2}.3 + {3.23.3^2} - {3^3} \\= {\left( {23 - 3} \right)^3} \\= {20^3} = 8000\)
Câu 30 :
Viết biểu thức sau dưới dạng lập phương của một tổng hoặc một hiệu:\(8-{{ 36}}x + {{ 54}}{x^2}\;-{{ 27}}{x^3}\).
Đáp án : B Phương pháp giải :
Áp dụng hằng đẳng thức: \({\left( {A - B} \right)^3}\; = {A^3}\; - 3{A^2}B + 3A{B^2}\; - {B^3}\)
Lời giải chi tiết :
\(8-{{ 36}}x + {{ 54}}{x^2}\;-{{ 27}}{x^3} = {2^3} - {3.2^2}.\left( {3x} \right) + 3.2.{\left( {3x} \right)^2} - {\left( {3x} \right)^3} = {\left( {2 - 3x} \right)^3}\)
Câu 31 :
Giá trị của biểu thức \({x^3}\;-6{x^2}y + 12x{y^2}\;-8{y^3}\;\)tại \(x = 2021\) và \(y = 1010\) là
Đáp án : B Phương pháp giải :
Áp dụng hằng đẳng thức: \({\left( {A - B} \right)^3}\; = {A^3}\; - 3{A^2}B + 3A{B^2}\; - {B^3}\) rồi thay giá trị của biến vào biểu thức.
Lời giải chi tiết :
\({x^3}\;-6{x^2}y + 12x{y^2}\;-8{y^3}\; = {x^3}\;-3.{x^2}.\left( {2y} \right) + 3.x.{\left( {2y} \right)^2} - {\left( {2y} \right)^3} = {\left( {x - 2y} \right)^3}\) Thay \(x = 2021\) và \(y = 1010\) vào biểu thức trên ta có\({\left( {2021 - 2.1010} \right)^3} = {1^3} = 1\)
Câu 32 :
Tìm \(x\) biết \({x^3}\;-12{x^2}\; + 48x-64 = 0\)
Đáp án : B Phương pháp giải :
Áp dụng hằng đẳng thức: \({\left( {A - B} \right)^3}\; = {A^3}\; - 3{A^2}B + 3A{B^2}\; - {B^3}\) rồi tìm đưa về bài toán tìm \(x\) đã biết.
Lời giải chi tiết :
\(\begin{array}{l}{x^3}\;-12{x^2}\; + 48x-64 = 0 \Leftrightarrow {x^3}\;-{{ 3}}.{x^2}.4 + 3.x{.4^2} - {4^3} = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow {\left( {x - 4} \right)^3} = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow x - 4 = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow x = 4\end{array}\)
Câu 33 :
Cho biểu thức \(H = \left( {x + 5} \right)({x^2}\;-5x + 25)-{\left( {2x + 1} \right)^3}\; + 7{\left( {x-1} \right)^3}\;-3x\left( { - 11x + 5} \right)\). Khi đó
Đáp án : C Phương pháp giải :
Áp dụng hằng đẳng thức: \({\left( {A + B} \right)^3}\; = {A^3}\; + 3{A^2}B + 3A{B^2}\; + {B^3}\) ,
\({\left( {A - B} \right)^3}\; = {A^3}\; - 3{A^2}B + 3A{B^2}\; - {B^3}\)và phép nhân đa thức với đơn thức rồi tìm đưa về bài toán tìm \(x\) đã biết. Lời giải chi tiết :
\(\begin{array}{l}H = \left( {x + 5} \right)({x^2}\;-5x + 25)-{\left( {2x + 1} \right)^3}\; + 7{\left( {x-1} \right)^3}\;-3x\left( { - 11x + 5} \right)\\\,\,\,\,\,\,\,\, = {x^3} - 5{x^2} + 25x + 5{x^2} - 25x + 125 - \left( {8{x^3} + 12{x^2} + 6x + 1} \right) + 7\left( {{x^3} - 3{x^2} + 3x - 1} \right) + 33{x^2} - 15x\\\,\,\,\,\,\,\,\, = {x^3} + 125 - 8{x^3} - 12{x^2} - 6x - 1 + 7{x^3} - 21{x^2} + 21x - 7 + 33{x^2} - 15x\\\,\,\,\,\,\,\,\, = \left( {{x^3} - 8{x^3} + 7{x^3}} \right) + \left( { - 12{x^2} - 21{x^2} + 33{x^2}} \right) + \left( {{5^3} - 1 - 7} \right)\\\,\,\,\,\,\,\,\, = 117\end{array}\) Vậy \(H\) là một số lẻ.
Câu 34 :
Tính giá trị của biểu thức \(M = {\left( {x + 2y} \right)^3} - 6{\left( {x + 2y} \right)^2} + 12\left( {x + 2y} \right) - 8\) tại\(x = 20;\,y = 1\) .
Đáp án : C Phương pháp giải :
Áp dụng hằng đẳng thức: \({\left( {A + B} \right)^3}\; = {A^3}\; + 3{A^2}B + 3A{B^2}\; + {B^3}\) và phép nhân đa thức với đơn thức rồi tìm đưa về bài toán tìm \(x\) đã biết.
Lời giải chi tiết :
\(\begin{array}{l}M = {\left( {x + 2y} \right)^3} - 6{\left( {x + 2y} \right)^2} + 12\left( {x + 2y} \right) - 8\\\,\,\,\,\,\,\, = {\left( {x + 2y} \right)^3} - 3.{\left( {x + 2y} \right)^2}.2 + 3.\left( {x + 2y} \right){.2^2} - {2^3}\\\,\,\,\,\,\,\, = {\left( {x + 2y - 2} \right)^3}\end{array}\) Thay \(x = 20;\,y = 1\) vào biểu thức \(M\) ta có \(M = {\left( {20 + 2.1 - 2} \right)^3} = {20^3} = 8000\).
Câu 35 :
Cho hai biểu thức \(P = {\left( {4x + 1} \right)^3}\;-\left( {4x + 3} \right)\left( {16{x^2}\; + 3} \right){\rm{, }}Q = {\left( {x-2} \right)^3}\;-x\left( {x + 1} \right)\left( {x-1} \right) + 6x\left( {x-3} \right) + 5x\). Tìm mối quan hệ giữa hai biểu thức \(P,\,Q\)?
Đáp án : C Phương pháp giải :
Áp dụng hằng đẳng thức: \({\left( {A + B} \right)^3}\; = {A^3}\; + 3{A^2}B + 3A{B^2}\; + {B^3}\),
\({\left( {A - B} \right)^3}\; = {A^3}\; - 3{A^2}B + 3A{B^2}\; - {B^3}\) và phép nhân hai đa thức rồi thu gọn đa thức. Lời giải chi tiết :
\(\begin{array}{l}P = {\left( {4x + 1} \right)^3}\;-\left( {4x + 3} \right)\left( {16{x^2}\; + 3} \right)\\\,\,\,\,\,\,\,\begin{array}{*{20}{l}}{ = {{\left( {4x} \right)}^3}\; + 3.{{\left( {4x} \right)}^2}.1 + 3.4x{{.1}^2}\; + {1^3}\;-(64{x^3}\; + 12x + 48{x^2}\; + 9)}\\\begin{array}{l} = 64{x^3}\; + 48{x^2}\; + 12x + 1-64{x^3}\;-12x-48{x^2}\;-9\\ = - 8\end{array}\end{array}\end{array}\) \(\begin{array}{l}Q = {\left( {x-2} \right)^3}\;-x\left( {x + 1} \right)\left( {x-1} \right) + 6x\left( {x-3} \right) + 5x\\\,\,\,\,\,\,\,\,\begin{array}{*{20}{l}}{ = {x^3}\;-3.{x^2}.2 + 3x{{.2}^2}\;-{2^3}\;-x\left( {{x^2}\;-1} \right) + 6{x^2}\;-18x + 5x}\\\begin{array}{l} = {x^3}\;-6{x^2}\; + 12x-8-{x^3}\; + x + 6{x^2}\;-18x + 5x\\ = - 8\end{array}\end{array}\end{array}\) \( \Rightarrow P = Q\)
Câu 36 :
Rút gọn biểu thức \(P = 8{x^3}\;-12{x^2}y + 6x{y^2}\;-{y^3}\; + 12{x^2}\;-12xy + 3{y^2}\; + 6x-3y + 11\) ta được
Đáp án : C Phương pháp giải :
Biến đổi biểu thức \(P\) và áp dụng hằng đẳng thức: \({\left( {A - B} \right)^3}\; = {A^3}\; - 3{A^2}B + 3A{B^2}\; - {B^3}\),
\({\left( {A - B} \right)^2}\; = {A^2}\; - 2AB + {B^2}\) Lời giải chi tiết :
\(\begin{array}{l}P = 8{x^3}\;-12{x^2}y + 6x{y^2}\;-{y^3}\; + 12{x^2}\;-12xy + 3{y^2}\; + 6x-3y + 11\\\,\,\,\,\,\begin{array}{*{20}{l}}{ = {{\left( {2x-y} \right)}^3}\; + 3{{\left( {2x-y} \right)}^2}\; + 3\left( {2x-y} \right) + 1 + 10}\\{\; = {{\left( {2x-y + 1} \right)}^3}\; + 10}\end{array}\end{array}\)
Câu 37 :
Cho biết \(Q = {\left( {2x-{\rm{ 1}}} \right)^3}\;-{\rm{ 8}}x\left( {x + 1} \right)\left( {x-1} \right) + {\rm{ 2}}x\left( {6x - 5} \right) = ax - b\,\,\left( {a,\,b \in \mathbb{Z}} \right)\). Khi đó
Đáp án : C Phương pháp giải :
Sử dụng các hằng đẳng thức: \({A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\),\({\left( {A - B} \right)^3}\; = {A^3}\; - 3{A^2}B + 3A{B^2}\; - {B^3}\)và phép nhân đơn thức với đa thức để rút gọn biểu thức đã cho.
Lời giải chi tiết :
Ta có \(\begin{array}{l}Q = {\left( {2x-{\rm{ 1}}} \right)^3}\;-{\rm{ 8}}x\left( {x + 1} \right)\left( {x-1} \right) + {\rm{ 2}}x\left( {6x - 5} \right)\\\,\,\,\,\,\,\, = 8{x^3} - 12{x^2} + 6x - 1 - 8x\left( {{x^2} - 1} \right) + 12{x^2} - 10x\\\,\,\,\,\,\,\, = 8{x^3} - 12{x^2} + 6x - 1 - 8{x^3} + 8x + 12{x^2} - 10x\\\,\,\,\,\,\,\, = 4x - 1\\ \Rightarrow a = 4;\,\,b = 1\end{array}\)
Câu 38 :
Biết giá trị \(x = a\,\,\) thỏa mãn biểu thức \(\;{(x + 1)^3} - {(x - 1)^3} - 6{(x - 1)^2} = 20\), ước của \(a\) là
Đáp án : C Phương pháp giải :
Sử dụng hằng đẳng thức: \({\left( {A - B} \right)^3}\; = {A^3}\; - 3{A^2}B + 3A{B^2}\; - {B^3}\),\({\left( {A - B} \right)^2}\; = {A^2}\; - 2AB + {B^2}\),\({\left( {A + B} \right)^3}\; = {A^3}\; + 3{A^2}B + 3A{B^2}\; + {B^3}\) đưa về bài toán tìm \(x\).
Lời giải chi tiết :
Ta có
\(\begin{array}{l}\;\,\,\,\,\,\,{(x + 1)^3} - {(x - 1)^3} - 6{(x - 1)^2} = 20\\ \Leftrightarrow {x^3} + 3{x^2} + 3x + 1 - \left( {{x^3} - 3{x^2} + 3x - 1} \right) - 6\left( {{x^2} - 2x + 1} \right) = - 10\\ \Leftrightarrow {x^3} + 3{x^2} + 3x + 1 - {x^3} + 3{x^2} - 3x + 1 - 6{x^2} + 12x - 6 = - 10\\ \Leftrightarrow 12x - 4 = 20\\ \Leftrightarrow 12x = 20 + 4\\ \Leftrightarrow 12x = 24\\ \Leftrightarrow x = 2\end{array}\) \( \Rightarrow a = 2\). Vậy ước của \(2\) là \(2\).
Câu 39 :
Cho hai biểu thức \(\;P = {\left( {4x + 1} \right)^3}\;-\left( {4x + 3} \right)(16{x^2}\; + 3);\,\,Q = {\left( {x-2} \right)^3}\;-x\left( {x + 1} \right)\left( {x-1} \right) + 6x\left( {x-3} \right) + 5x\). So sánh \(P\) và \(Q\)?
Đáp án : C Phương pháp giải :
Sử dụng hằng đẳng thức: \({\left( {A - B} \right)^3}\; = {A^3}\; - 3{A^2}B + 3A{B^2}\; - {B^3}\),\({\left( {A - B} \right)^2}\; = {A^2}\; - 2AB + {B^2}\),\({\left( {A + B} \right)^3}\; = {A^3}\; + 3{A^2}B + 3A{B^2}\; + {B^3}\) đưa về bài toán tìm \(x\).
Lời giải chi tiết :
Ta có \(\begin{array}{l}\;P = {\left( {4x + 1} \right)^3}\;-\left( {4x + 3} \right)(16{x^2}\; + 3)\\\,\,\,\,\,\,\,\,\begin{array}{*{20}{l}}{ = {{\left( {4x} \right)}^3}\; + 3.{{\left( {4x} \right)}^2}.1 + 3.4x{{.1}^2}\; + {1^3}\;-\left( {64{x^3}\; + 12x + 48{x^2}\; + 9} \right)}\\\begin{array}{l} = 64{x^3}\; + 48{x^2}\; + 12x + 1-64{x^3}\;-12x-48{x^2}\;-9\\ = - 8\end{array}\end{array}\\Q = {\left( {x-2} \right)^3}\;-x\left( {x + 1} \right)\left( {x-1} \right) + 6x\left( {x-3} \right) + 5x\\\,\,\,\,\,\,\,\begin{array}{*{20}{l}}{ = {x^3}\;-3.{x^2}.2 + 3x{{.2}^2}\;-{2^3}\;-x\left( {{x^2}\;-1} \right) + 6{x^2}\;-18x + 5x}\\\begin{array}{l} = {x^3}\;-6{x^2}\; + 12x-8-{x^3}\; + x + 6{x^2}\;-18x + 5x\\ = - 8\end{array}\end{array}\\ \Rightarrow P = Q\end{array}\)
Câu 40 :
Cho \(\;2x-y = 9\). Giá trị của biểu thức \(\;A = 8{x^3}\;-12{x^2}y + 6x{y^2}\;-{y^3}\; + 12{x^2}\;-12xy + 3{y^2}\; + 6x-3y + 11\) là
Đáp án : C Phương pháp giải :
Sử dụng hằng đẳng thức: \({\left( {A - B} \right)^3}\; = {A^3}\; - 3{A^2}B + 3A{B^2}\; - {B^3}\),\({\left( {A - B} \right)^2}\; = {A^2}\; - 2AB + {B^2}\),\({\left( {A + B} \right)^3}\; = {A^3}\; + 3{A^2}B + 3A{B^2}\; + {B^3}\) đưa về bài toán tìm \(x\).
Lời giải chi tiết :
Ta có \(\begin{array}{l}\;A = 8{x^3}\;-12{x^2}y + 6x{y^2}\;-{y^3}\; + 12{x^2}\;-12xy + 3{y^2}\; + 6x-3y + 11\\\,\,\,\,\,\,\,\,\begin{array}{*{20}{l}}{ = {{\left( {2x} \right)}^3}\;-3.{{\left( {2x} \right)}^2}.y + 3.2x.y + {y^3}\; + 3\left( {4{x^2}\;-4xy + {y^2}} \right) + 3\left( {2x-y} \right) + 11}\\{\; = {{\left( {2x-y} \right)}^3}\; + 3{{\left( {2x-y} \right)}^2}\; + 3\left( {2x-y} \right) + 1 + 10}\\{\; = {{\left( {2x-y + 1} \right)}^3}\; + 10}\end{array}\end{array}\) Thay \(\;2x-y = 9\) vào biểu thức \(\;A\) ta có \(\;A = {\left( {9 + 1} \right)^3} + 10 = 1010\)
Câu 41 :
Giá trị của biểu thức \(Q = {a^3} - {b^3}\) biết \(a - b = 4\) và \(ab = - 3\) là
Đáp án : C Phương pháp giải :
Sử dụng hằng đẳng thức:\({\left( {A - B} \right)^3}\; = {A^3}\; - 3{A^2}B + 3A{B^2}\; - {B^3}\) suy ra có \({a^3} - {b^3}\)theo \({(a - b)^3}\). Thay \(a - b = 4\) và \(ab = - 3\) vào tìm giá trị của Q
Lời giải chi tiết :
Ta có
\(\begin{array}{l}{(a - b)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3} = {a^3} - {b^3} - 3ab(a - b)\\ \Rightarrow {a^3} - {b^3} = {(a - b)^3} + 3ab(a - b)\\ \Leftrightarrow Q = {(a - b)^3} + 3ab(a - b)\end{array}\) Thay \(a + b = 5\) và \(ab = - 3\) vào Q ta có \(\begin{array}{c}Q = {(a - b)^3} + 3ab(a - b)\\ = {4^3} + 3.( - 3).4\\ = 64 - 36\\ = 28\end{array}\)
Câu 42 :
Biểu thức \({(a + b + c)^3}\)được phân tích thành
Đáp án : B Phương pháp giải :
Sử dụng hằng đẳng thức:\({\left( {A + B} \right)^3}\; = {A^3}\; + 3{A^2}B + 3A{B^2}\; + {B^3}\) để phân tích biểu thức
Lời giải chi tiết :
\(\begin{array}{c}{(a + b + c)^3} = {{\rm{[}}(a + b) + c{\rm{]}}^3}\\ = {(a + b)^3} + 3{(a + b)^2}c + 3(a + b){c^2} + {c^3}\\ = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} + 3{(a + b)^2}c + 3(a + b){c^2} + {c^3}\\ = {a^3} + {b^3} + {c^3} + 3ab(a + b) + 3{(a + b)^2}c + 3(a + b){c^2}\\ = {a^3} + {b^3} + {c^3} + 3(a + b)\left[ {ab + (a + b)c + {c^2}} \right]\\ = {a^3} + {b^3} + {c^3} + 3(a + b)(ab + ac + bc + {c^2})\\ = {a^3} + {b^3} + {c^3} + 3(a + b)\left[ {a(b + c) + c(b + c)} \right]\\ = {a^3} + {b^3} + {c^3} + 3(a + b)(b + c)(c + a)\end{array}\) Vậy \({(a + b + c)^3}\) = \({a^3} + {b^3} + {c^3} + 3(a + b)(b + c)(c + a)\)
Câu 43 :
Cho \(\;a + b + c = 0\). Giá trị của biểu thức \(\;B = {a^3}\; + {b^3}\; + {c^3}\;-3abc\;\) là
Đáp án : A Phương pháp giải :
Sử dụng hằng đẳng thức:\({\left( {A + B} \right)^3}\; = {A^3}\; + 3{A^2}B + 3A{B^2}\; + {B^3}\) rút \({A^3}\; + {B^3}\)theo \({\left( {A + B} \right)^3}\;\)
Lời giải chi tiết :
\(\begin{array}{l}\;{(a + b)^3}\; = {a^3}\; + 3{a^2}b + 3a{b^2}\; + {b^3}\; = {a^3}\; + {b^3}\; + 3ab\left( {a + b} \right)\\ \Rightarrow {a^3}\; + {b^3}\; = {\left( {a + b} \right)^3}\;-3ab\left( {a + b} \right)\end{array}\) Ta có: \(\begin{array}{c}\;B = {a^3}\; + {b^3}\; + {c^3}\;-3abc\;\\ = {(a + b)^3} - 3ab(a + b) + {c^3} - 3abc\\ = {(a + b)^3} + {c^3} - 3ab(a + b + c)\end{array}\) Tương tự, ta có \({(a + b + c)^3} - 3(a + b)c(a + b + c)\) \( \Rightarrow B = {(a + b + c)^3} - 3(a + b)c(a + b + c) - 3ab(a + b + c)\) Mà \(\;a + b + c = 0\) nên \(\;B = 0 - 3(a + b)c.0 - 3ab.0 = 0\)
Câu 44 :
Chọn câu sai?
Đáp án : D Phương pháp giải :
Kiểm tra các đáp án dựa vào hai hằng đẳng thức Tổng và hiệu hai lập phương; sử dụng tính chất của phép cộng.
Lời giải chi tiết :
Hằng đẳng thức tổng hai lập phương:\({A^3} + {B^3} = (A + B)({A^2} - AB + {B^2})\) nên A đúng; Hằng đẳng thức hiệu hai lập phương:\({A^3} - {B^3} = (A - B)({A^2} + AB + {B^2})\) nên B đúng; \(A + B = B + A \Rightarrow {(A + B)^3} = {(B + A)^3}\) nên C đúng; \(A - B \ne B - A \Rightarrow {(A - B)^3} \ne {(B - A)^3}\) nên D sai.
Câu 45 :
Viết biểu thức \((x - 3y)\left( {{x^2} + 3xy + 9{y^2}} \right)\) dưới dạng hiệu hai lập phương
Đáp án : C Phương pháp giải :
Áp dụng hằng đẳng thức hiệu hai lập phương:\({A^3} - {B^3} = (A - B)({A^2} + AB + {B^2})\)
Lời giải chi tiết :
Ta có:
\(\begin{array}{l}(x - 3y)\left( {{x^2} + 3xy + 9{y^2}} \right)\\ = (x - 3y)\left[ {{x^2} + x.3y + {{(3y)}^2}} \right]\\ = {x^3} - {(3y)^3}\end{array}\)
Câu 46 :
Điền vào chỗ trống \({x^3} + 512 = (x + 8)\left( {{x^2} - \left[ {} \right] + 64} \right)\)
Đáp án : B Phương pháp giải :
Áp dụng hằng đẳng thức tổng hai lập phương: \({A^3} + {B^3} = (A + B)({A^2} - AB + {B^2})\)
Lời giải chi tiết :
Ta có:
\(\begin{array}{l}{x^3} + 512 = (x + 8)\left( {{x^2} - 8x + 64} \right)\\ \Rightarrow \left[ {} \right] = 8x\end{array}\)
Câu 47 :
Rút gọn biểu thức \(A = {x^3} + 12 - (x + 2)\left( {{x^2} - 2x + 4} \right)\) ta được giá trị của A là
Đáp án : B Phương pháp giải :
Áp dụng hằng đẳng thức tổng hai lập phương: \({A^3} + {B^3} = (A + B)({A^2} - AB + {B^2})\)
Lời giải chi tiết :
Ta có: \(\begin{array}{l}A = {x^3} + 12 - (x + 2)\left( {{x^2} - 2x + 4} \right)\\ = {x^3} + 12 - ({x^3} + 8)\\ = {x^3} + 12 - {x^3} - 8\\ = 4\end{array}\) \(A = 4 \vdots 2\) nên A không phải số nguyên tố. \(A = 4\) không chia hết cho 3. \(A = 4\) không chia hết cho 5. \(A = 4 = {2^2}\) nên A là một số chính phương.
Câu 48 :
Giá trị của biểu thức \(125 + (x - 5)({x^3} + 5x + 25)\) với x = -5 là
Đáp án : B Phương pháp giải :
Áp dụng hằng đẳng thức hiệu hai lập phương:\((A - B)({A^2} + AB + {B^2}) = {A^3} - {B^3}\) để rút gọn biểu thức, sau đó thay x = -5 vào để tính giá trị của biểu thức
Lời giải chi tiết :
\(\begin{array}{l}125 + (x - 5)({x^3} + 5x + 25)\\ = 125 + {x^3} - 125\\ = {x^3}\end{array}\) Thay x = -5 vào biểu thức, ta có: \({( - 5)^3} = - 125\)
Câu 49 :
Có bao nhiêu cách điền vào dấu ? để biểu thức \((x - 2).?\) là một hằng đẳng thức?
Đáp án : C Phương pháp giải :
Áp dụng 7 hằng đẳng thức đã học.
Lời giải chi tiết :
Biểu thức \((x - 2).?\) là một hằng đẳng thức khi: Cách 1. \(\begin{array}{l}(x - 2).(x - 2) = {(x - 2)^2} = {x^2} - 4x + 4\\ \Rightarrow ? = x - 2\end{array}\) Cách 2. \(\begin{array}{l}(x - 2).(x + 2) = {x^2} - 4\\ \Rightarrow ? = x + 2\end{array}\) Cách 3. \(\begin{array}{l}(x - 2).({x^2} + 2x + 4) = {x^3} - 8\\ \Rightarrow ? = {x^2} + 2x + 4\end{array}\) Có 3 cách điền vào dấu ?
Câu 50 :
Viết biểu thức \(8 + {(4x - 3)^3}\) dưới dạng tích
Đáp án : D Phương pháp giải :
Áp dụng các hằng đẳng thức:
\({A^3} + {B^3} = (A + B)({A^2} - AB + {B^2})\); \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) Lời giải chi tiết :
\(\begin{array}{l}8 + {(4x - 3)^3} = {2^3} + {(4x - 3)^3}\\ = (2 + 4x - 3)\left[ {{2^2} - 2.(4x - 3) + {{(4x - 3)}^2}} \right]\\ = (4x - 1)(4 - 8x + 6 + 16{x^2} - 24x + 9)\\ = (4x - 1)(16{x^2} - 32x + 19)\end{array}\)
Câu 51 :
Thực hiện phép tính \({(x + y)^3} - {\left( {x - 2y} \right)^3}\)
Đáp án : A Phương pháp giải :
Áp dụng các hằng đẳng thức:
\({(A + B)^2} = {A^2} + 2AB + {B^2}\); \({(A - B)^2} = {A^2} - 2AB + {B^2}\); \({A^3} - {B^3} = (A - B)({A^2} + AB + {B^2})\) và quy tắc nhân đa thức để thực hiện phép tính. Lời giải chi tiết :
\(\begin{array}{l}{(x + y)^3} - {\left( {x - 2y} \right)^3}\\ = (x + y - x + 2y)\left[ {{{(x + y)}^2} + (x + y)(x - 2y) + {{(x - 2y)}^2}} \right]\\ = 3y({x^2} + 2xy + {y^2} + {x^2} + xy - 2xy - 2{y^2} + {x^2} - 4xy + 4{y^2})\\ = 3y(3{x^2} - 3xy + 3{y^2})\\ = 9{x^2}y - 9x{y^2} + 9{y^3}\end{array}\)
Câu 52 :
Tìm \(x\) biết \((x + 3)({x^2} - 3x + 9) - x({x^2} - 3) = 21\)
Đáp án : B Phương pháp giải :
Áp dụng hằng đẳng thức: \({(A + B)^2} = {A^2} + 2AB + {B^2}\) rồi tìm đưa về bài toán tìm \(x\) đã biết.
Lời giải chi tiết :
\(\begin{array}{l}(x + 3)({x^2} - 3x + 9) - x({x^2} - 3) = 21\\ \Leftrightarrow {x^3} + 27 - {x^3} + 3x = 21\\ \Leftrightarrow 3x + 27 = 21\\ \Leftrightarrow 3x = 21 - 27\\ \Leftrightarrow 3x = - 6\\ \Leftrightarrow x = - 2\end{array}\)
Câu 53 :
Viết biểu thức \({a^6} - {b^6}\) dưới dạng tích
Đáp án : D Phương pháp giải :
Áp dụng các hằng đẳng thức:
\({A^3} - {B^3} = (A - B)({A^2} + AB + {B^2})\); \({A^2} - {B^2} = (A - B)(A + B)\) Lời giải chi tiết :
\(\begin{array}{l}{a^6} - {b^6} = ({a^2} - {b^2})({a^4} + {a^2}{b^2} + {b^4})\\ = (a - b)(a + b)({a^4} + {a^2}{b^2} + {b^4})\end{array}\)
Câu 54 :
Cho \(x + y = 1\). Tính giá trị biểu thức \(A = {x^3} + 3xy + {y^3}\)
Đáp án : C Phương pháp giải :
+ Áp dụng hằng đẳng thức: \({A^3} + {B^3} = (A + B)({A^2} - AB + {B^2})\); \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) + Thay \(x + y = 1\) vào biểu thức để tính giá trị của A. Lời giải chi tiết :
Ta có: \(\begin{array}{l}A = {x^3} + 3xy + {y^3}\\ = {x^3} + {y^3} + 3xy\\ = (x + y)({x^2} - xy + {y^2}) + 3xy\\ = (x + y)({x^2} + 2xy + {y^2} - 3xy) + 3xy\\ = (x + y)\left[ {{{(x + y)}^2} - 3xy} \right] + 3xy\end{array}\) Thay \(x + y = 1\) vào biểu thức A ta được: \(\begin{array}{l}A = (x + y)\left[ {{{(x + y)}^2} - 3xy} \right] + 3xy\\ = 1.\left( {{1^2} - 3xy} \right) + 3xy\\ = 1 - 3xy + 3xy\\ = 1\end{array}\).
Câu 55 :
Cho x – y = 2. Tính giá trị biểu thức \(A = {x^3} - 6xy - {y^3}\)
Đáp án : D Phương pháp giải :
+ Áp dụng hằng đẳng thức: \({A^3} + {B^3} = (A + B)({A^2} - AB + {B^2})\); \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) + Thay \(x + y = 1\) vào biểu thức để tính giá trị của A. Lời giải chi tiết :
\(\begin{array}{l}A = {x^3} - 6xy - {y^3}\\ = {x^3} - {y^3} - 6xy\\ = (x - y)({x^2} + xy + {y^2}) - 6xy\\ = (x - y)({x^2} - 2xy + {y^2} + 3xy) - 6xy\\ = (x - y)\left[ {{{(x - y)}^2} + 3xy} \right] - 6xy\end{array}\) Thay x – y = 2 vào biểu thức A, ta được: \(\begin{array}{l}A = 2\left( {{2^2} + 3xy} \right) - 6xy\\ = 8 + 6xy - 6xy\\ = 8\end{array}\)
Câu 56 :
Cho \(A = {1^3} + {3^3} + {5^3} + {7^3} + {9^3} + {11^3}\). Khi đó
Đáp án : C Phương pháp giải :
Áp dụng hằng đẳng thức: \({A^3} + {B^3} = (A + B)({A^2} - AB + {B^2})\)
Lời giải chi tiết :
\(\begin{array}{l}A = {1^3} + {3^3} + {5^3} + {7^3} + {9^3} + {11^3}\\ = ({1^3} + {11^3}) + ({3^3} + {9^3}) + ({5^3} + {7^3})\\ = (1 + 11)({1^2} - 11 + {11^2}) + (3 + 9)({3^2} - 3.9 + {9^2}) + (5 + 7)({5^2} - 5.7 + {7^2})\\ = 12({1^2} - 11 + {11^2}) + 12({3^2} - 3.9 + {9^2}) + 12({5^2} - 5.7 + {7^2})\end{array}\) Vì mỗi số hạng trong tổng đều chia hết cho 12 nên \(A \vdots 12\). \(\begin{array}{l}A = {1^3} + {3^3} + {5^3} + {7^3} + {9^3} + {11^3}\\ = ({1^3} + {9^3}) + ({3^3} + {7^3}) + {5^3} + {11^3}\\ = (1 + 9)({1^2} - 9 + {9^2}) + (3 + 7)({3^2} - 3.7 + {7^2}) + {5^3} + {11^3}\\ = 10({1^2} - 9 + {9^2}) + 10({3^2} - 3.7 + {7^2}) + {5^3} + {11^3}\end{array}\) Ta có: \(10 \vdots 5\)\( \Rightarrow 10({1^2} - 9 + {9^2}) \vdots 5\); \(10({3^2} - 3.7 + {7^2}) \vdots 5\) \({5^3} \vdots 5\). Mà \({11^3}\) không chia hết cho 5 nên A không chia hết cho 5.
Câu 57 :
Rút gọn biểu thức \(\left( {a - b + 1} \right)\left[ {{a^2} + {b^2} + ab - (a + 2b) + 1} \right] - ({a^3} + 1)\)
Đáp án : C Phương pháp giải :
Áp dụng hằng đẳng thức: \({A^3} + {B^3} = (A + B)({A^2} - AB + {B^2})\)
Lời giải chi tiết :
Ta có:
\(\begin{array}{l}\left( {a - b + 1} \right)\left[ {{a^2} + {b^2} + ab - (a + 2b) + 1} \right] - ({a^3} + 1)\\ = \left[ {a + \left( {1 - b} \right)} \right]\left[ {{a^2} - (a - ab) + ({b^2} - 2b + 1)} \right] - \left( {{a^3} + 1} \right)\\ = \left[ {a + \left( {1 - b} \right)} \right]\left[ {{a^2} - a(1 - b) + {{\left( {b - 1} \right)}^2}} \right] - \left( {{a^3} + 1} \right)\\ = {a^3} + {(1 - b)^3} - {a^3} - 1\\ = {(1 - b)^3} - 1\end{array}\)
Câu 58 :
Cho \(a,b,m\) và \(n\) thỏa mãn các đẳng thức: \(a + b = m\) và \(a - b = n\). Giá trị của biểu thức \(A = {a^3} + {b^3}\) theo m và n.
Đáp án : C Phương pháp giải :
Áp dụng hằng đẳng thức: \({A^3} + {B^3} = (A + B)({A^2} - AB + {B^2})\)
Lời giải chi tiết :
Ta có:
\(\begin{array}{l}\left\{ \begin{array}{l}a + b = m\\a - b = n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{m + n}}{2}\\b = \frac{{m - n}}{2}\end{array} \right.\\ \Rightarrow ab = \frac{{(m + n)(m - n)}}{{2.2}} = \frac{{{m^2} - {n^2}}}{4}\end{array}\) Biến đổi biểu thức A, ta được: \(\begin{array}{l}A = {a^3} + {b^3}\\ = (a + b)({a^2} - ab + {b^2})\\ = (a + b)\left[ {({a^2} - 2ab + {b^2}) + ab} \right]\\ = (a + b)\left[ {{{\left( {a - b} \right)}^2} + ab} \right]\end{array}\) Thay \(a + b = m;a - b = n,ab = \frac{{{m^2} - {n^2}}}{4}\) vào A, ta có: \(\begin{array}{l}A = m\left( {{n^2} + \frac{{{m^2} - {n^2}}}{4}} \right)\\ = \frac{{4m{n^2}}}{4} + \frac{{{m^3}}}{4} - \frac{{m{n^2}}}{4}\\ = \frac{{3m{n^2}}}{4} + \frac{{{m^3}}}{4}\\ = \frac{1}{4}m\left( {3{n^2} + {m^2}} \right)\end{array}\)
Câu 59 :
Phân tích đa thức sau thành nhân tử \({x^{4\;}} + {x^3}y - x{y^{3\;}} - {y^4}\)
Đáp án : D Phương pháp giải :
Sử dụng hằng đẳng thức: \({A^2} - {B^2} = (A + B)(A - B)\);\({A^3} - {B^3} = (A - B)({A^2} + AB + {B^2})\) để phân tích đa thức.
Lời giải chi tiết :
Theo đề ra ta có:
\(\begin{array}{*{20}{l}}{{x^{4\;}} + {x^3}y - x{y^{3\;}} - {y^4}}\\{ = {x^{4\;}} - {y^{4\;}} + {x^3}y - x{y^3}}\\{ = \left( {{x^{2\;}} - {y^2}} \right)\left( {{x^{2\;}} + {y^2}} \right) + xy\left( {{x^{2\;}} - {y^2}} \right)}\\{ = \left( {{x^{2\;}} - {y^2}} \right)\left( {{x^{2\;}} + {y^{2\;}} + xy} \right)}\\{ = \left( {x + y} \right)\left( {x - y} \right)\left( {{x^{2\;}} + xy + {y^2}} \right)}\\{ = \left( {x + y} \right)\left( {{x^{3\;}} - {y^3}} \right)}\end{array}\)
Câu 60 :
Rút gọn biểu thức \({\left( {x - y} \right)^{3\;}} + \left( {x - y} \right)({x^{2\;}} + xy + {y^2}) + 3({x^2}y - x{y^2})\)
Đáp án : C Phương pháp giải :
Sử dụng hằng đẳng thức: \({\left( {A - B} \right)^3}\; = {A^3}\; - 3{A^2}B + 3A{B^2}\; - {B^3}\);\({A^3} - {B^3} = (A - B)({A^2} + AB + {B^2})\) để rút gọn biểu thức.
Lời giải chi tiết :
Ta có
\(\begin{array}{*{20}{l}}{{{\left( {x - y} \right)}^{3\;}} + \left( {x - y} \right)({x^{2\;}} + xy + {y^2}) + 3({x^2}y - x{y^2})}\\{ = {x^{3\;}} - 3{x^2}y + 3x{y^{2\;}} - {y^{3\;}} + {x^{3\;}} - {y^{3\;}} + 3{x^2}y - 3x{y^2}}\\{ = 2{x^{3\;}} - 2{y^3}}\end{array}\)
Câu 61 :
Cho \(x,y,a\) và \(b\) thỏa mãn các đẳng thức: \(x - y = a - b\,\,\,(1)\) và \({x^2} + {y^2} = {a^2} + {b^2}\,\,\,(2)\). Biểu thức \({x^3} - {y^3} = ?\)
Đáp án : B Phương pháp giải :
Áp dụng hằng đẳng thức \({(A - B)^2} = {A^2} - 2AB + {B^2}\) để có được đẳng thức \(xy = ab\); từ đó áp dụng hằng đẳng thức: \({A^3} - {B^3} = (A - B)({A^2} + AB + {B^2})\)
Lời giải chi tiết :
Ta có:
\(\begin{array}{l}x - y = a - b \Rightarrow {(x - y)^2} = {(a - b)^2}\\ \Leftrightarrow {x^2} - 2xy + {y^2} = {a^2} - 2ab + {b^2}\end{array}\) Từ (2) ta có: \({x^2} + {y^2} = {a^2} + {b^2} \Rightarrow - 2xy = - 2ab \Leftrightarrow xy = ab\) Mặt khác: \(\left\{ \begin{array}{l}{x^3} - {y^3} = (x - y)({x^2} + xy + {y^2})\\{a^3} - {b^3} = (a - b)({a^2} + ab + {b^2})\end{array} \right.\). Vì \(x - y = a - b;{x^2} + {y^2} = {a^2} + {b^2}\) và \(xy = ab\) nên \({x^3} - {y^3} = {a^3} - {b^3}\)
Câu 62 :
Với mọi a, b, c thỏa mãn a + b + c = 0 thì giá trị của biểu thức \({a^3} + {b^3} + {c^3} - 3abc\) là:
Đáp án : A Phương pháp giải :
Sử dụng các hằng đẳng thức:\({\left( {A + B} \right)^3}\; = {A^3}\; + 3{A^2}B + 3A{B^2}\; + {B^3};{A^3} + {B^3} = (A + B)\left( {{A^2} - AB + {B^2}} \right)\) để phân tích biểu thức
Lời giải chi tiết :
\(\begin{array}{l}{a^3} + {b^3} + {c^3} - 3abc\\ = {(a + b)^3} - 3ab(a + b) + {c^3} - 3abc\\ = {(a + b)^3} + {c^3} - 3ab(a + b + c)\\ = (a + b + c)\left[ {{{\left( {a + b} \right)}^2} - (a + b)c + {c^2}} \right] - 3ab(a + b + c)\\ = (a + b + c)\left( {{a^2} + 2ab + {b^2} - ac - bc + {c^2} - 3ab} \right)\\ = (a + b + c)({a^2} + {b^2} + {c^2} - ab - ac - bc)\end{array}\) Vì a + b + c = 0 => \({a^3} + {b^3} + {c^3} - 3abc = 0\). * Như vậy, với a + b + c = 0, ta có: \({a^3} + {b^3} + {c^3} = 3abc\).
Câu 63 :
Viết biểu thức sau dưới dạng tích: \(A = {(3 - x)^3} + {(x - y)^3} + {(y - 3)^3}\)
Đáp án : D Phương pháp giải :
Sử dụng đẳng thức đặc biệt \({a^3}\; + {b^3}\; + {c^3}\; - 3abc = \;\left( {a + b + c} \right)\left( {{a^2}\; + {b^2}\; + {c^2}\; - ab - bc - ac} \right)\);
Ta thấy a + b + c = 0 nên \({a^3} + {b^3} + {c^3} = 3abc\). Lời giải chi tiết :
\(\begin{array}{l}\;{(a + b)^3}\; = {a^3}\; + 3{a^2}b + 3a{b^2}\; + {b^3}\; = {a^3}\; + {b^3}\; + 3ab\left( {a + b} \right)\\ \Rightarrow {a^3}\; + {b^3}\; = {\left( {a + b} \right)^3}\;-3ab\left( {a + b} \right)\end{array}\) Ta có: \(\begin{array}{c}\;B = {a^3}\; + {b^3}\; + {c^3}\;-3abc\;\\ = {(a + b)^3} - 3ab(a + b) + {c^3} - 3abc\\ = {(a + b)^3} + {c^3} - 3ab(a + b + c)\end{array}\) Tương tự, ta có \({(a + b + c)^3} - 3(a + b)c(a + b + c)\) \( \Rightarrow B = {(a + b + c)^3} - 3(a + b)c(a + b + c) - 3ab(a + b + c)\) Mà \(\;a + b + c = 0\) nên \(\;B = 0 - 3(a + b)c.0 - 3ab.0 = 0\)
|