Lý thuyết Hệ thức giữa cạnh và góc của tam giác vuông Toán 9 Chân trời sáng tạo

1. Hệ thức giữa cạnh và góc của tam giác vuông Công thức tính cạnh góc vuông theo cạnh huyền và sin, côsin của các góc nhọn

Quảng cáo

1. Hệ thức giữa cạnh và góc của tam giác vuông

Công thức tính cạnh góc vuông theo cạnh huyền và sin, côsin của các góc nhọn

Trong tam giác vuông, mỗi cạnh góc vuông bằng cạnh huyền nhân với sin góc đối hoặc nhân với côsin góc kề.

Cạnh góc vuông = (cạnh huyền ) × (sin góc đối)

= (cạnh huyền ) × (cosin góc kề)

Ví dụ 1:

Trong tam giác ABC vuông tại A, ta có:

\(\begin{array}{l}b = a.\sin B = a.\cos C;\\c = a.\sin C = a.\cos B.\end{array}\)

Công thức tính cạnh góc vuông theo cạnh góc vuông kia và tang, côtang của các góc nhọn

Trong tam giác vuông, mỗi cạnh góc vuông bằng cạnh góc vuông kia nhân với tang góc đối hoặc côtang góc kề.

Cạnh góc vuông = (cạnh góc vuông còn lại ) × (tan góc đối) 

= (cạnh góc vuông còn lại ) × (cot góc kề)

Ví dụ 2:

Trong tam giác ABC vuông tại A, ta có:

\(\begin{array}{l}b = c.\tan B = c.\cot C;\\c = b.\tan C = b.\cot B.\end{array}\)

2. Giải tam giác vuông

Giải tam giác vuông là tính các cạnh và góc chưa biết của tam giác đó.

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close