Lý thuyết Giới hạn của dãy số - SGK Toán 11 Chân trời sáng tạo1, Giới hạn hữu hạn của dãy số Quảng cáo
1, Giới hạn hữu hạn của dãy số a, Giới hạn 0 của dãy số - Dãy số \(\left( {{u_n}} \right)\) có giới hạn 0 khi n dần tới dương vô cực, nếu \(\left| {{u_n}} \right|\) có thể nhỏ hơn một số dương bé tùy ý , kể tử một số hạng nào đó trở đi. Kí hiệu \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 0\) hay \({u_n} \to 0\)khi \(n \to + \infty \) hay \(\lim {u_n} = 0\). * Chú ý: + \(\lim \frac{1}{{{n^k}}} = 0,k \in \mathbb{Z}.\) + Nếu \(\left| q \right| < 1\) thì \(\lim {q^n} = 0\) b, Giới hạn hữu hạn của dãy số Ta nói dãy số \(\left( {{u_n}} \right)\) có giới hạn là số thực a khi n dần tới dương vô cực, nếu \(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n} - a} \right) = 0\), kí hiệu \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = a\) hay \({u_n} \to a\) khi \(n \to + \infty \). * Chú ý: Nếu \({u_n} = c\)(c là hằng số) thì \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = c\) 2. Các phép toán về giới hạn hữu hạn của dãy số Cho \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = a,\mathop {\lim }\limits_{n \to + \infty } {v_n} = b\) và c là hằng số thì
3. Tổng của cấp số nhân lùi vô hạn Cấp số nhân \(\left( {{u_n}} \right)\) có công bội q thỏa mãn \(\left| q \right| < 1\) được gọi là cấp số nhân lùi vô hạn. Tổng của cấp số nhân lùi vô hạn là: \(S = \frac{{{u_1}}}{{1 - q}}\left( {\left| q \right| < 1} \right)\) 4. Giới hạn vô cực - Dãy số \(\left( {{u_n}} \right)\)được gọi là có giới hạn \( + \infty \)khi \(n \to + \infty \)nếu \({u_n}\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi, kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } {u_n} = + \infty \) hay \({u_n} \to + \infty \) khi \(n \to + \infty \). - Dãy số \(\left( {{u_n}} \right)\) được gọi là có giới hạn \( - \infty \)khi \(n \to + \infty \) nếu \(\mathop {\lim }\limits_{x \to + \infty } \left( { - {u_n}} \right) = + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } {u_n} = - \infty \) hay \({u_n} \to - \infty \) khi \(n \to + \infty \). * Chú ý:
*Nhận xét: \(\begin{array}{l}a,\lim {n^k} = + \infty ,k \in \mathbb{N},k \ge 1.\\b,\lim {q^n} = + \infty ;q \in \mathbb{R},q > 1.\end{array}\)
Quảng cáo
|