Bài 1 trang 69 SGK Toán 11 tập 1 - Chân trời sáng tạoTìm các giới hạn sau: Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Tìm các giới hạn sau: a) \(\lim \frac{{ - 2n + 1}}{n}\) b) \(\lim \frac{{\sqrt {16{n^2} - 2} }}{n}\) c) \(\lim \frac{4}{{2n + 1}}\) d) \(\lim \frac{{{n^2} - 2n + 3}}{{2{n^2}}}\) Phương pháp giải - Xem chi tiết Bước 1: Chia cả tử và mẫu cho lũy thừa bậc cao nhất của tử và mẫu. Bước 2: Tính các giới hạn của tử và mẫu rồi áp dụng quy tắc tính giới hạn của thương để tính giới hạn. Lời giải chi tiết a) \(\lim \frac{{ - 2n + 1}}{n} = \lim \frac{{n\left( { - 2 + \frac{1}{n}} \right)}}{n} = \lim \left( { - 2 + \frac{1}{n}} \right) = - 2\) b) \(\lim \frac{{\sqrt {16{n^2} - 2} }}{n} = \lim \frac{{\sqrt {{n^2}\left( {16 - \frac{2}{{{n^2}}}} \right)} }}{n} = \lim \frac{{n\sqrt {16 - \frac{2}{{{n^2}}}} }}{n} = \lim \sqrt {16 - \frac{2}{{{n^2}}}} = 4\) c) \(\lim \frac{4}{{2n + 1}} = \lim \frac{4}{{n\left( {2 + \frac{1}{n}} \right)}} = \lim \left( {\frac{4}{n}.\frac{1}{{2 + \frac{1}{n}}}} \right) = \lim \frac{4}{n}.\lim \frac{1}{{2 + \frac{1}{n}}} = 0\) d) \(\lim \frac{{{n^2} - 2n + 3}}{{2{n^2}}} = \lim \frac{{{n^2}\left( {1 - \frac{2}{n} + \frac{3}{{{n^2}}}} \right)}}{{2{n^2}}} = \lim \frac{{1 - \frac{2}{n} + \frac{3}{{{n^2}}}}}{2} = \frac{1}{2}\)
Quảng cáo
|