Giải mục 2 trang 35, 36 Chuyên đề học tập Toán 10 - Kết nối tri thức

Quan sát khai triển nhị thức của ({(a + b)^n}) với (n in left{ {1;2;3;4;5} right}) ở HDD3, hãy dự đoán công thức khai triển trong tường hợp tổng quát.

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

HĐ4

Quan sát khai triển nhị thức của \({(a + b)^n}\) với \(n \in \left\{ {1;2;3;4;5} \right\}\) ở HDD3, hãy dự đoán công thức khai triển trong tường hợp tổng quát.

Lời giải chi tiết:

Quan sát khai triển nhị thức của \({(a + b)^n}\) với \(n \in \left\{ {1;2;3;4;5} \right\}\), ta thấy:

+ Công thức khai triển có n+1 số hạng,

+ Từ trái qua phải:

Hệ số khai triển của các số hạng lần lượt là \(C_n^0,C_n^1,...,C_n^n\).

Số mũ của a giảm dần từ n về 0.

Số mũ của b tăng dần từ 0 đến n.

=> Dự đoán \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)

Luyện tập 2

Khai triển \({(x - 2y)^6}\)

Phương pháp giải:

Áp dụng \({(a + b)^6} = C_6^0{a^6} + C_6^1{a^5}b + C_6^2{a^4}{b^2} + C_6^3{a^3}{b^3} + C_6^4{a^2}{b^4} + C_6^5a{b^5} + C_6^6{b^6}\)

Với \(a = x,b =  - 2y\)

Lời giải chi tiết:

Theo công thức nhị thức Newton, ta có:

\(\begin{array}{l}{(x - 2y)^6} = C_6^0{x^6} + C_6^1{x^5}.2y + C_6^2{x^4}{\left( {2y} \right)^2} + C_6^3{x^3}{\left( {2y} \right)^3} + C_6^4{x^2}{\left( {2y} \right)^4} + C_6^5x{\left( {2y} \right)^5} + C_6^6{\left( {2y} \right)^6}\\ = 1.{x^6} + 6.{x^5}.2y + 15.{x^4}.4{y^2} + 20{x^3}.8{y^3} + 15{x^2}16{y^4} + 6x.32{y^5} + 1.64{y^6}\\ = {x^6} + 12{x^5}y + 60{x^4}{y^2} + 160{x^3}{y^3} + 240{x^2}{y^4} + 192x{y^5} + 64{y^6}\end{array}\)

 

Luyện tập 3

Tìm hệ số của \({x^7}\) trong khai triển thành đa thức của \({(2 - 3x)^{10}}\)

Phương pháp giải:

Số hạng chứa \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{(ax)^k}{b^{n - k}}\)

Do đó hệ số của \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{a^k}{b^{n - k}}\)

Lời giải chi tiết:

Vì \({(2 - 3x)^{10}} = {( - 3x + 2)^{10}}\) nên

Số hạng chứa \({x^k}\) trong khai triển của \({(2 - 3x)^{10}}\) hay \({( - 3x + 2)^{10}}\)là \(C_{10}^{10 - k}{( - 3x)^k}{2^{10 - k}}\)

Số hạng chứa \({x^7}\) ứng với \(k = 7\), tức là số hạng \(C_{10}^3{( - 3x)^7}{2^3}\) hay \( - 2099520{x^7}\)

Vậy hệ số của \({x^7}\) trong khai triển của \({(2 - 3x)^{10}}\) là \( - 2099520\)

 

Vận dụng

a) Viết khai triển nhị thức Newton của \({(1 + x)^n}\)

b) Cho \(x = 1\) trong khai triển ở câu a), viết đẳng thức nhận được. Giải thích ý nghĩa của đẳng thức này với lưu ý rằng \(C_n^k(0 \le k \le n)\) chính là số tập con gồm k phần tử của một tập hợp có n phần tử.

c) Tương tự, cho \(x =  - 1\) trong khai triển ở câu a), viết đẳng thức nhận được. Giải thích ý nghĩa của đẳng thức này.

Lời giải chi tiết:

a) \({(1 + x)^n} = C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}\)

b) Thay \(x = 1\) trong khai triển ở câu a), ta được:

\({2^n} = C_n^0 + C_n^1 + C_n^2 + ... + C_n^n\)

Với \(C_n^k(0 \le k \le n)\) chính là số tập con gồm k phần tử của một tập hợp có n phần tử, thì vế phải là tổng số tập con của tập hợp có n phần tử.

=> Số tập con của tập có n phần tử là: \({2^n}\)

c) Thay \(x =  - 1\) trong khai triển ở câu a), ta được:

\(\begin{array}{l}0 = C_n^0 - C_n^1 + C_n^2 + ... + {( - 1)^n}C_n^n{x^n}\\ \Leftrightarrow C_n^0 + C_n^2 + C_n^4 + ... = C_n^1 + C_n^3 + C_n^5 + ...\end{array}\)

Ý nghĩa: Tập hợp có n phần tử có số tập con có chẵn phần tử = số tập con có lẻ phần tử.

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close