Giải bài tập 9 trang 80 sách bài tập toán 12 - Chân trời sáng tạoTrong một đợt khám sức khoẻ, người ta thấy có 15% người dân ở một khu vực mắc bệnh béo phì. Tỉ lệ người béo phì và thường xuyên tập thể dục là 2%. Biết rằng tỉ lệ người thường xuyên tập thể dục ở khu vực đó là 40%. Theo kết quả điều tra trên, việc tập thể dục sẽ làm giảm khả năng bị béo phì đi bao nhiêu lần? Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Quảng cáo
Đề bài Trong một đợt khám sức khoẻ, người ta thấy có 15% người dân ở một khu vực mắc bệnh béo phì. Tỉ lệ người béo phì và thường xuyên tập thể dục là 2%. Biết rằng tỉ lệ người thường xuyên tập thể dục ở khu vực đó là 40%. Theo kết quả điều tra trên, việc tập thể dục sẽ làm giảm khả năng bị béo phì đi bao nhiêu lần? Phương pháp giải - Xem chi tiết Sử dụng công thức tính xác suất của \(A\) với điều kiện \(B\): \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\). Lời giải chi tiết Gọi \(A\) là biến cố “Một người thường xuyên tập thể dục”, \(B\) là biến cố “Một người bị béo phì”. Có 15% người dân ở một khu vực mắc bệnh béo phì nên ta có \(P\left( B \right) = 0,15\). Tỉ lệ người béo phì và thường xuyên tập thể dục là 2% nên ta có \(P\left( {AB} \right) = 0,02\). Tỉ lệ người thường xuyên tập thể dục ở khu vực đó là 40% nên ta có \(P\left( A \right) = 0,4\). Do đó, \(P\left( {\overline A } \right) = 1 - P\left( A \right) = 1 - 0,4 = 0,6\). Vì \(AB\) và \(\overline A B\) là hai biến cố xung khắc và \(AB \cup \overline A B = B\) nên theo tính chất của xác suất, ta có \(P\left( {\overline A B} \right) = P\left( B \right) - P\left( {AB} \right) = 0,15 - 0,02 = 0,13\). Xác suất để một người mắc bệnh béo phì, biết rằng người đó không thường xuyên tập thể dục là: \(P\left( {B|\overline A } \right) = \frac{{P\left( {\overline A B} \right)}}{{P\left( {\overline A } \right)}} = \frac{{0,13}}{{0,6}} = \frac{{13}}{{60}}\). Xác suất để một người mắc bệnh béo phì, biết rằng người đó thường xuyên tập thể dục là: \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,02}}{{0,4}} = \frac{1}{{20}} = 0,05\). Vì \(\frac{{P\left( {B|\overline A } \right)}}{{P\left( {B|A} \right)}} = \frac{{13}}{{60}}:\frac{1}{{20}} = \frac{{13}}{3} \approx 4,33\) nên việc tập thể dục sẽ làm giảm khả năng bị béo phì khoảng 4,33 lần.
Quảng cáo
|