Giải bài tập 6.14 trang 79 SGK Toán 12 tập 2 - Kết nối tri thứcCho \(P\left( A \right) = \frac{2}{5};P\left( {B|A} \right) = \frac{1}{3};P\left( {B|\overline A } \right) = \frac{1}{4}\). Giá trị của P(B) là A. \(\frac{{19}}{{60}}\). B. \(\frac{{17}}{{60}}\). C. \(\frac{9}{{20}}\). D. \(\frac{7}{{30}}\). Quảng cáo
Đề bài
Cho \(P\left( A \right) = \frac{2}{5};P\left( {B|A} \right) = \frac{1}{3};P\left( {B|\overline A } \right) = \frac{1}{4}\). Phương pháp giải - Xem chi tiết Sử dụng kiến thức về hai biến cố xung khắc: Nếu A và B là hai biến cố xung khắc thì \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\). Lời giải chi tiết Vì AB và \(\overline A B\) là hai biến cố xung khắc và \(\overline A B \cup AB = B\) Do đó, \(P\left( B \right) = P\left( {AB} \right) + P\left( {\overline A B} \right) = \frac{2}{{15}} + \frac{3}{{20}} = \frac{{17}}{{60}}\) Chọn B
Quảng cáo
|