Giải bài tập 5.46 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức

Trong không gian Oxyz, cho hai mặt phẳng (P): \(x - y - z - 1 = 0\), (Q): \(2x + y - z - 2 = 0\) và điểm \(A\left( { - 1;2;0} \right)\). Viết phương trình mặt phẳng (R) đi qua điểm A đồng thời vuông góc với cả hai mặt phẳng (P) và (Q).

Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Trong không gian Oxyz, cho hai mặt phẳng (P): \(x - y - z - 1 = 0\), (Q): \(2x + y - z - 2 = 0\) và điểm \(A\left( { - 1;2;0} \right)\). Viết phương trình mặt phẳng (R) đi qua điểm A đồng thời vuông góc với cả hai mặt phẳng (P) và (Q).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về lập phương trình mặt phẳng đi qua một điểm và biết cặp vectơ chỉ phương để viết phương trình: Trong không gian Oxyz, bài toán viết phương trình mặt phẳng đi qua điểm M và biết cặp vectơ chỉ phương \(\overrightarrow u ,\overrightarrow v \) có thể thực hiện theo các bước sau:

+ Tìm vectơ pháp tuyến là \(\overrightarrow n  = \left[ {\overrightarrow u ,\overrightarrow v } \right]\).

+ Lập phương trình tổng quát của mặt phẳng đi qua M và biết vectơ pháp tuyến là \(\overrightarrow n  = \left[ {\overrightarrow u ,\overrightarrow v } \right]\).

Lời giải chi tiết

Mặt phẳng (P) nhận \(\overrightarrow {{n_1}} \left( {1; - 1; - 1} \right)\) làm một vectơ pháp tuyến.

Mặt phẳng (Q) nhận \(\overrightarrow n \left( {2;1; - 1} \right)\) làm một vectơ pháp tuyến.

Ta có: \(\left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&{ - 1}\\1&{ - 1}\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{ - 1}&1\\{ - 1}&2\end{array}} \right|,\left| {\begin{array}{*{20}{c}}1&{ - 1}\\2&1\end{array}} \right|} \right) = \left( {2; - 1;3} \right)\)

Vì mặt phẳng (R) đồng thời vuông góc với cả hai mặt phẳng (P) và (Q) nên mặt phẳng (R) nhận \(\left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right] = \left( {2; - 1;3} \right)\) làm một vectơ pháp tuyến.

Mà mặt phẳng (R) đi qua điểm \(A\left( { - 1;2;0} \right)\) nên phương trình mặt phẳng (R) là:

\(2\left( {x + 1} \right) - \left( {y - 2} \right) + 3z = 0 \Leftrightarrow 2x - y + 3z + 4 = 0\)

  • Giải bài tập 5.47 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức

    Trong không gian Oxyz, cho hai đường thẳng d: \(\frac{{x + 2}}{1} = \frac{{y + 3}}{2} = \frac{{z - 3}}{{ - 2}}\) và \(d':\left\{ \begin{array}{l}x = 1 - t\\y = - 2 + t\\z = 2t\end{array} \right.\). a) Xác định vị trí tương đối của hai đường thẳng d và d’. b) Tính góc giữa d và d’.

  • Giải bài tập 5.48 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức

    Trong không gian Oxyz, tính góc tạo bởi đường thẳng d: \(\frac{{x + 3}}{2} = \frac{{y - 2}}{{ - 2}} = \frac{{z + 1}}{1}\) và mặt phẳng (P): \(x + y - 2z + 3 = 0\).

  • Giải bài tập 5.49 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức

    Trong không gian Oxyz, tính góc giữa mặt phẳng (P): \(x + y + z - 1 = 0\) và mặt phẳng Oxy.

  • Giải bài tập 5.51 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức

    Bản thiết kế của một công trình được vẽ trong một hệ trục tọa độ Oxyz. Sàn nhà của công trình thuộc mặt phẳng Oxy, đường ống thoát nước thẳng và đi qua hai điểm \(A\left( {1;2; - 1} \right)\) và \(B\left( {5;6; - 2} \right)\). Tính góc tạo bởi đường ống thoát nước và mặt sàn.

  • Giải bài tập 5.52 trang 63 SGK Toán 12 tập 2 - Kết nối tri thức

    Nếu đứng trước biển và nhìn ra xa, người ta sẽ thấy một đường giao giữa mặt biển và bầu trời, đó là đường chân trời đối với người quan sát (H.5.45a). Về mặt Vật lí, đường chân trời là đường giới hạn phần Trái Đất mà người quan sát có thể nhìn thấy được (phần còn lại bị chính Trái Đất che khuất). Ta có thể hình dung rằng, nếu người quan sát ở tại đỉnh một chiếc nón và Trái Đất được “thả” vào trong chiếc nón đó, thì đường chân trời trong trường hợp này là đường chạm giữa Trái Đất và chiếc nón (H.5

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close