Giải bài tập 5.46 trang 63 SGK Toán 12 tập 2 - Kết nối tri thứcTrong không gian Oxyz, cho hai mặt phẳng (P): \(x - y - z - 1 = 0\), (Q): \(2x + y - z - 2 = 0\) và điểm \(A\left( { - 1;2;0} \right)\). Viết phương trình mặt phẳng (R) đi qua điểm A đồng thời vuông góc với cả hai mặt phẳng (P) và (Q). Quảng cáo
Đề bài Trong không gian Oxyz, cho hai mặt phẳng (P): \(x - y - z - 1 = 0\), (Q): \(2x + y - z - 2 = 0\) và điểm \(A\left( { - 1;2;0} \right)\). Viết phương trình mặt phẳng (R) đi qua điểm A đồng thời vuông góc với cả hai mặt phẳng (P) và (Q). Phương pháp giải - Xem chi tiết Sử dụng kiến thức về lập phương trình mặt phẳng đi qua một điểm và biết cặp vectơ chỉ phương để viết phương trình: Trong không gian Oxyz, bài toán viết phương trình mặt phẳng đi qua điểm M và biết cặp vectơ chỉ phương \(\overrightarrow u ,\overrightarrow v \) có thể thực hiện theo các bước sau: + Tìm vectơ pháp tuyến là \(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow v } \right]\). + Lập phương trình tổng quát của mặt phẳng đi qua M và biết vectơ pháp tuyến là \(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow v } \right]\). Lời giải chi tiết Mặt phẳng (P) nhận \(\overrightarrow {{n_1}} \left( {1; - 1; - 1} \right)\) làm một vectơ pháp tuyến. Mặt phẳng (Q) nhận \(\overrightarrow n \left( {2;1; - 1} \right)\) làm một vectơ pháp tuyến. Ta có: \(\left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&{ - 1}\\1&{ - 1}\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{ - 1}&1\\{ - 1}&2\end{array}} \right|,\left| {\begin{array}{*{20}{c}}1&{ - 1}\\2&1\end{array}} \right|} \right) = \left( {2; - 1;3} \right)\) Vì mặt phẳng (R) đồng thời vuông góc với cả hai mặt phẳng (P) và (Q) nên mặt phẳng (R) nhận \(\left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right] = \left( {2; - 1;3} \right)\) làm một vectơ pháp tuyến. Mà mặt phẳng (R) đi qua điểm \(A\left( { - 1;2;0} \right)\) nên phương trình mặt phẳng (R) là: \(2\left( {x + 1} \right) - \left( {y - 2} \right) + 3z = 0 \Leftrightarrow 2x - y + 3z + 4 = 0\)
Quảng cáo
|