Giải bài tập 5.28 trang 71 SGK Toán 12 tập 2 - Cùng khám phá

Cho tứ diện OABC có \(A(a;0;0)\), \(B(0;b;0)\), \(C(0;0;c)\), (\(a > 0,b > 0,c > 0\)). Gọi \(\alpha ,\beta ,\gamma \) lần lượt là các góc giữa các mặt phẳng \((OAB)\), \((OBC)\), \((OAC)\) với mặt phẳng \((ABC)\). Chứng minh rằng: \({\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1.\)

Quảng cáo

Đề bài

Cho tứ diện OABC có \(A(a;0;0)\), \(B(0;b;0)\), \(C(0;0;c)\), (\(a > 0,b > 0,c > 0\)). Gọi \(\alpha ,\beta ,\gamma \) lần lượt là các góc giữa các mặt phẳng \((OAB)\), \((OBC)\), \((OAC)\) với mặt phẳng \((ABC)\). Chứng minh rằng:

\({\cos ^2}\alpha  + {\cos ^2}\beta  + {\cos ^2}\gamma  = 1.\)

Phương pháp giải - Xem chi tiết

Xác định các vectơ pháp tuyến của các mặt phẳng \((OAB),(OBC),(OAC)\) và \((ABC)\), sau đó áp dụng công thức tính góc giữa hai mặt phẳng bằng cosin của góc giữa các vectơ pháp tuyến.

Lời giải chi tiết

Độ dài của các vectơ pháp tuyến:

- Vectơ pháp tuyến của mặt phẳng \((OAB)\): \(\overrightarrow {{n_{OAB}}}  = \overrightarrow {OA}  \times \overrightarrow {OB}  = (a,0,0) \times (0,b,0) = (0,0,ab)\).

- Vectơ pháp tuyến của mặt phẳng \((OBC)\): \(\overrightarrow {{n_{OBC}}}  = \overrightarrow {OB}  \times \overrightarrow {OC}  = (0,b,0) \times (0,0,c) = (bc,0,0)\).

- Vectơ pháp tuyến của mặt phẳng \((OAC)\): \(\overrightarrow {{n_{OAC}}}  = \overrightarrow {OA}  \times \overrightarrow {OC}  = (a,0,0) \times (0,0,c) = (0,ac,0)\).

- Vectơ pháp tuyến của mặt phẳng \((ABC)\):

\(\overrightarrow {{n_{ABC}}}  = \overrightarrow {AB}  \times \overrightarrow {AC}  = ( - a,b,0) \times ( - a,0,c) = (bc,ac,ab)\).

Tính cosin của các góc:

- \(\cos \alpha  = \frac{{|ab \cdot ab|}}{{ab \cdot \sqrt {{a^2}{b^2} + {b^2}{c^2} + {a^2}{c^2}} }} = \frac{{{a^2}{b^2}}}{{ab \cdot \sqrt {{a^2}{b^2} + {b^2}{c^2} + {a^2}{c^2}} }} = \frac{{ab}}{{\sqrt {{a^2}{b^2} + {b^2}{c^2} + {a^2}{c^2}} }}\).

- \(\cos \beta  = \frac{{|bc \cdot bc|}}{{bc \cdot \sqrt {{a^2}{b^2} + {b^2}{c^2} + {a^2}{c^2}} }} = \frac{{bc}}{{\sqrt {{a^2}{b^2} + {b^2}{c^2} + {a^2}{c^2}} }}\).

- \(\cos \gamma  = \frac{{|ac \cdot ac|}}{{ac \cdot \sqrt {{a^2}{b^2} + {b^2}{c^2} + {a^2}{c^2}} }} = \frac{{ac}}{{\sqrt {{a^2}{b^2} + {b^2}{c^2} + {a^2}{c^2}} }}\).

Tổng các bình phương:

\({\cos ^2}\alpha  + {\cos ^2}\beta  + {\cos ^2}\gamma  = {\left( {\frac{{ab}}{{\sqrt {{a^2}{b^2} + {b^2}{c^2} + {a^2}{c^2}} }}} \right)^2} + {\left( {\frac{{bc}}{{\sqrt {{a^2}{b^2} + {b^2}{c^2} + {a^2}{c^2}} }}} \right)^2} + {\left( {\frac{{ac}}{{\sqrt {{a^2}{b^2} + {b^2}{c^2} + {a^2}{c^2}} }}} \right)^2}\)

\( = \frac{{{a^2}{b^2}}}{{{a^2}{b^2} + {b^2}{c^2} + {a^2}{c^2}}} + \frac{{{b^2}{c^2}}}{{{a^2}{b^2} + {b^2}{c^2} + {a^2}{c^2}}} + \frac{{{a^2}{c^2}}}{{{a^2}{b^2} + {b^2}{c^2} + {a^2}{c^2}}}.\)

\( = \frac{{{a^2}{b^2} + {b^2}{c^2} + {a^2}{c^2}}}{{{a^2}{b^2} + {b^2}{c^2} + {a^2}{c^2}}} = 1.\)

Vậy ta đã chứng minh được rằng:

\({\cos ^2}\alpha  + {\cos ^2}\beta  + {\cos ^2}\gamma  = 1.\)

  • Giải bài tập 5.29 trang 71 SGK Toán 12 tập 2 - Cùng khám phá

    Một khuôn nướng bánh mì được mô phỏng trong không gian Oxyz như Hình 5.30 với các điểm sau: \(S(0;0;0)\), \(P(8;0;0)\), \(Q(8;18;0)\), \(T( - 1; - 1;7)\), \(R(9;19;7)\). Tính góc giữa hai cạnh kề nhau, giữa cạnh bên và mặt đáy, giữa mặt bên và mặt đáy của khuôn.

  • Giải bài tập 5.30 trang 71 SGK Toán 12 tập 2 - Cùng khám phá

    Trong hệ trục tọa độ Oxyz, với mặt phẳng (Oxy) là mặt đất, một máy bay cất cánh từ vị trí \(A(0;10;0)\) với vận tốc \(\vec v = (150;150;40)\). a) Viết công thức tính tọa độ của máy bay trong 2 giờ đầu tiên. b) Tính góc nâng của máy bay (góc giữa hướng chuyển động bay lên của máy bay với đường bằng) và làm tròn kết quả đến hàng đơn vị.

  • Giải bài tập 5.27 trang 71 SGK Toán 12 tập 2 - Cùng khám phá

    Tính góc giữa các cặp mặt phẳng a) \(\alpha :3x + 4y + 5z - 1 = 0\) và \(\beta :2x + y + z - 3 = 0\) b) \(\alpha :x - y + 2z - 1 = 0\) và \(\beta :x + 2y - z + 3 = 0\) c) \(\alpha :x + 3y - 2z - 1 = 0\) và \(\beta :4x + 2y + 5z - 3 = 0\)

  • Giải bài tập 5.26 trang 71 SGK Toán 12 tập 2 - Cùng khám phá

    Tính góc giữa đường thẳng d và mặt phẳng \(\alpha \) a) \(d:\frac{x}{1} = \frac{y}{2} = \frac{z}{2}\quad {\rm{và }}\quad \alpha :2x + 2y + 1 = 0\) b) \(d:\left\{ {\begin{array}{*{20}{l}}{x = 3 + 7t}\\{y = - 1 - 8t}\\{z = 1 - 15t}\end{array}} \right.,\quad (t \in \mathbb{R})\) và \(\alpha :2x + 2y + 1 = 0\) c) \(d:\frac{x}{3} = \frac{y}{{ - 1}} = \frac{{z - 1}}{2},\quad \alpha :6x - 2y + 4z = 0\)

  • Giải bài tập 5.25 trang 70 SGK Toán 12 tập 2 - Cùng khám phá

    Tính góc giữa các cặp đường thẳng sau: a) (d:left{ {begin{array}{*{20}{l}}{x = 1 + 2t}{y = - 1 + t,,,,,,,,,,t in mathbb{R}}{z = 3 + 4t}end{array}} right.quad {rm{v`a }}quad d':left{ {begin{array}{*{20}{l}}{x = 2 - t'}{y = - 1 + 3t',,,,,t', in mathbb{R}}{z = 4 + 2t'}end{array}} right.) b) (d:frac{x}{1} = frac{y}{2} = frac{{z - 2}}{2}quad {rm{v`a }}quad d':left{ {begin{array}{*{20}{l}}{x = 3 + t'}{y = - 1 + t',,,,,t', in mathb

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close