-
Câu hỏi mục 1 trang 24, 25
Cho hàm số \(y = f(x) = - {x^3} + 3{x^2} - 4\) a) Tập xác định của hàm số \(f(x)\) là gì? b) Hàm số \(f(x)\) đồng biến, nghịch biến trên các khoảng nào? c) Hàm số \(f(x)\) đạt cực đại và cực tiểu tại những điểm nào? d) Đồ thị hàm số \(y = f(x)\) có tiệm cận hay không?
Xem lời giải -
Câu hỏi mục 2 trang 26
Khảo sát sự biến thiên và vẽ đồ thị các hàm số sau: a) (y = f(x) = - {x^3} + 2{x^2} + 4x - 3) b) (y = f(x) = frac{1}{3}{x^3} - {x^2} + x + 1)
Xem lời giải -
Câu hỏi mục 3 trang 28
Khảo sát sự biến thiên và vẽ đồ thị của hàm số (y = f(x) = frac{{2x + 4}}{{2x + 1}}).
Xem lời giải -
Câu hỏi mục 4 trang 30
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau đây: a) (y = frac{{ - {x^2} - 2x - 2}}{{x + 1}}) b) ({rm{y}} = frac{{{x^2} - 2x - 3}}{{x - 2}})
Xem lời giải -
Câu hỏi mục 5 trang 33, 34
Trong đợt chào mừng kỷ niệm ngày 26 tháng 3, trường X có tổ chức cho các lớp bày các gian hàng tại sân trường. Để có thể che nắng, chứa đồ đạc trong quá trình tham gia hoạt động, một lớp đã nghĩ ra ý tưởng như sau: Dựng trên mặt đất bằng phẳng một chiếc lều từ một tấm bạt hình chữ nhật có chiều rộng là 4m và chiều dài là 6m, bằng cách gập đôi tấm bạt lại theo đoạn nối trung điểm hai cạnh là chiều dài của tấm bạt, hai mép chiều rộng còn lại của tấm bạt sát đất và cách nhau x (m). Tìm x để khoảng
Xem lời giải -
Bài 1.20 trang 34
Khảo sát sự biến thiên và vẽ đồ thị các hàm số sau: a) (y = {x^3} + 3{x^2} - 4) b) (y = {x^3} + 4{x^2} + 4x) c) (y = - 2{x^3} + 2) d) (y = - {x^3} - {x^2} - x + 1)
Xem lời giải -
Bài 1.21 trang 34
Khảo sát sự biến thiên và vẽ đồ thị các hàm số sau: a) \(y = \frac{{x - 2}}{{2x + 1}}\) b) \(y = \frac{{1 - 2x}}{{2x + 4}}\)
Xem lời giải -
Bài 1.22 trang 34
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau đây: a) (y = frac{{{x^2} + 2x + 2}}{{x + 1}}) b) ({rm{y}} = frac{{{x^2} - 2x - 3}}{{x - 2}}) c)(y = - x + 1 + frac{1}{{x + 1}}) d)(y = frac{{2{x^2} - x + 1}}{{1 - x}})
Xem lời giải -
Bài 1.23 trang 35
Một người chèo thuyền từ điểm A trên bờ một con sông thẳng, rộng 3 km và muốn đến điểm B, cách bờ đối diện 8 km về phía hạ lưu, càng nhanh càng tốt như Hình 1.39. Người ấy có thể chèo thuyền qua sông đến điểm C rồi chạy bộ đến B, hoặc anh ta có thể chèo thuyền đến D nào đó giữa C và B rồi chạy bộ đến B. Tốc độ chèo thuyền là 6 km/h và tốc độ chạy bộ là 8 km/h. Tìm thời gian ngắn nhất mà người này có thể đi từ A đến B (bỏ qua vận tốc của nước và làm tròn kết quả đến hàng phần trăm).
Xem lời giải -
Bài 1.24 trang 35
Một chất điểm chuyển động theo quy luật \(s(t) = - {t^3} + 2t - t\), với 𝑡 (đơn vị: giây) là khoảng thời gian tính từ khi vật bắt đầu chuyển động và 𝑠 (đơn vị: mét) là quãng đường chất điểm di chuyển được trong khoảng thời gian đó. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số 𝑠=𝑠(𝑡) trên hệ trục tọa độ 𝑡0𝑠. b) Trong khoảng thời gian 2 giây kể từ khi bắt đầu chuyển động, chất điểm đạt được vận tốc lớn nhất là bao nhiêu?
Xem lời giải