Giải bài tập 1.36 trang 42 SGK Toán 12 tập 1 - Kết nối tri thứcTiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} + 2x - 2}}{{x + 2}}\) là A. \(y = - 2\). B. \(y = 1\). C. \(y = x + 2\). D. \(y = x\). Quảng cáo
Đề bài Tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} + 2x - 2}}{{x + 2}}\) là A. \(y = - 2\). B. \(y = 1\). C. \(y = x + 2\). D. \(y = x\). Phương pháp giải - Xem chi tiết Sử dụng kiến thức về khái niệm đường tiệm cận xiên để tìm tiệm cận xiên: Đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) gọi là đường tiệm cận xiên (gọi tắt là tiệm cận xiên) của đồ thị hàm số \(y = f\left( x \right)\) nếu \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - \left( {ax + b} \right)} \right] = 0\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - \left( {ax + b} \right)} \right] = 0\). Lời giải chi tiết Ta có: \(y = \frac{{{x^2} + 2x - 2}}{{x + 2}} = x - \frac{2}{{x + 2}}\) Lại có: \(\mathop {\lim }\limits_{x \to + \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to + \infty } \left[ {x - \frac{2}{{x + 2}} - x} \right] = \mathop {\lim }\limits_{x \to + \infty } - \frac{2}{{x + 2}} = 0\) \(\mathop {\lim }\limits_{x \to - \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to - \infty } \left[ {x - \frac{2}{{x + 2}} - x} \right] = \mathop {\lim }\limits_{x \to - \infty } - \frac{2}{{x + 2}} = 0\) Do đó, đường thẳng \(y = x\) là tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} + 2x - 2}}{{x + 2}}\). Chọn D
Quảng cáo
|