Giải bài tập 1.18 trang 25 SGK Toán 12 tập 1 - Kết nối tri thứcTìm các tiệm cận của đồ thị hàm số sau: a) \(y = \frac{{3 - x}}{{2x + 1}}\); b) \(y = \frac{{2{x^2} + x - 1}}{{x + 2}}\). Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Quảng cáo
Đề bài Tìm các tiệm cận của đồ thị hàm số sau: Phương pháp giải - Xem chi tiết Sử dụng kiến thức về khái niệm tiệm cận ngang của đồ thị hàm số để tìm tiệm cận ngang: Đường thẳng \(y = {y_0}\) gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang) của đồ thị hàm số \(y = f\left( x \right)\) nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) Sử dụng kiến thức về khái niệm tiệm cận đứng của đồ thị hàm số để tìm tiệm cận đứng: Đường thẳng \(x = {x_0}\) gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số \(y = f\left( x \right)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn: \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \); \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty \) Sử dụng kiến thức về khái niệm đường tiệm cận xiên để tìm tiệm cận xiên: Đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) gọi là đường tiệm cận xiên (gọi tắt là tiệm cận xiên) của đồ thị hàm số \(y = f\left( x \right)\) nếu \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - \left( {ax + b} \right)} \right] = 0\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - \left( {ax + b} \right)} \right] = 0\). Lời giải chi tiết a) Vì \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{3 - x}}{{2x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\frac{3}{x} - 1}}{{2 + \frac{1}{x}}} = - \frac{1}{2}\); \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{3 - x}}{{2x + 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\frac{3}{x} - 1}}{{2 + \frac{1}{x}}} = - \frac{1}{2}\) Do đó, đường thẳng \(y = \frac{{ - 1}}{2}\) là tiệm cận ngang của đồ thị hàm số \(y = \frac{{3 - x}}{{2x + 1}}\). Vì \(\mathop {\lim }\limits_{x \to {{\left( { - \frac{1}{2}} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( { - \frac{1}{2}} \right)}^ - }} \frac{{3 - x}}{{2x + 1}} = - \infty ;\mathop {\lim }\limits_{x \to {{\left( { - \frac{1}{2}} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - \frac{1}{2}} \right)}^ + }} \frac{{3 - x}}{{2x + 1}} = + \infty \) Do đó, đường thẳng \(x = \frac{{ - 1}}{2}\) là tiệm cận đứng của đồ thị hàm số \(y = \frac{{3 - x}}{{2x + 1}}\). b) Vì \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{2{x^2} + x - 1}}{{x + 2}} = \mathop {\lim }\limits_{x \to - \infty } \left[ {x\frac{{\left( {2 + \frac{1}{x} - \frac{1}{{{x^2}}}} \right)}}{{\left( {1 + \frac{2}{x}} \right)}}} \right] = - \infty \) \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{2{x^2} + x - 1}}{{x + 2}} = \mathop {\lim }\limits_{x \to + \infty } \left[ {x\frac{{\left( {2 + \frac{1}{x} - \frac{1}{{{x^2}}}} \right)}}{{\left( {1 + \frac{2}{x}} \right)}}} \right] = + \infty \) Do đó, đồ thị hàm số \(y = \frac{{2{x^2} + x - 1}}{{x + 2}}\) không có tiệm cận ngang. Vì \(\mathop {\lim }\limits_{x \to - {2^ - }} y = \mathop {\lim }\limits_{x \to - {2^ - }} \frac{{2{x^2} + x - 1}}{{x + 2}} = - \infty ;\mathop {\lim }\limits_{x \to - {2^ + }} y = \mathop {\lim }\limits_{x \to - {2^ + }} \frac{{2{x^2} + x - 1}}{{x + 2}} = + \infty \) Do đó, đồ thị hàm số \(y = \frac{{2{x^2} + x - 1}}{{x + 2}}\) có tiệm cận đứng là \(x = - 2\) Ta có: \(y = \frac{{2{x^2} + x - 1}}{{x + 2}} = 2x - 3 + \frac{5}{{x + 2}}\) \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - \left( {2x - 3} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {2x - 3 + \frac{5}{{x + 2}} - \left( {2x - 3} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{5}{{x + 2}} = 0\) \(\mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - \left( {2x - 3} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \left[ {2x - 3 + \frac{5}{{x + 2}} - \left( {2x - 3} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{5}{{x + 2}} = 0\) Do đó, đồ thị hàm số \(y = \frac{{2{x^2} + x - 1}}{{x + 2}}\) có tiệm cận xiên là: \(y = 2x - 3\).
Quảng cáo
|