Giải bài 8 trang 120 SGK Toán 7 tập 2 - Cánh diều

Cho tam giác ABC có O là giao điểm của ba đường trung trực. Qua các điểm A, B, C lần lượt kẻ các đường thẳng vuông góc với OA, OB, OC, hai trong ba đường đó lần lượt cắt nhau tại M, N, P (Hình 144). Chứng minh:

Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên...

Quảng cáo

Đề bài

Cho tam giác ABCO là giao điểm của ba đường trung trực. Qua các điểm A, B, C lần lượt kẻ các đường thẳng vuông góc với OA, OB, OC, hai trong ba đường đó lần lượt cắt nhau tại M, N, P (Hình 144). Chứng minh:

a) \(\Delta OMA = \Delta OMB\) và tia MO là tia phân giác của góc NMP;

b) O là giao điểm của ba đường phân giác của tam giác MNP.

Phương pháp giải - Xem chi tiết

a) Chứng minh hai tam giác bằng nhau theo trường hợp cạnh huyền – cạnh góc vuông.

b) Chứng minh dựa vào kết quả của phần a).

Lời giải chi tiết

a) O là giao điểm của ba đường trung trực của tam giác ABC nên O cách đều ba đỉnh của tam giác đó hay OA = OB = OC.

Xét hai tam giác vuông OAMOBM có:

     OA = OB;

     OM chung.

Vậy \(\Delta OAM = \Delta OBM\)(cạnh huyền – cạnh góc vuông).

Suy ra: \(\widehat {OMA} = \widehat {BMO}\) ( 2 góc tương ứng).

Vậy MO là tia phân giác của góc BMA hay MO là tia phân giác của góc NMP (ba điểm M, A, P thẳng hàng và ba điểm M, B, N thẳng hàng).

b) MO là tia phân giác của góc NMP.

Tương tự ta có:

     NO là tia phân giác của góc MNP.

     PO là tia phân giác của góc MPN.

Vậy O là giao điểm của ba đường phân giác MO, NO, PO của tam giác MNP

Quảng cáo

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close