Giải bài 7 trang 65 vở thực hành Toán 9Sử dụng định nghĩa căn bậc ba, chứng minh rằng (sqrt[3]{{7 + 5sqrt 2 }} = sqrt 2 + 1). Quảng cáo
Đề bài Sử dụng định nghĩa căn bậc ba, chứng minh rằng \(\sqrt[3]{{7 + 5\sqrt 2 }} = \sqrt 2 + 1\). Phương pháp giải - Xem chi tiết Căn bậc ba của số thực a là số thực x thỏa mãn \({x^3} = a\) (kí hiệu là \(\sqrt[3]{a}\)). Lời giải chi tiết Theo định nghĩa, \(\sqrt[3]{{7 + 5\sqrt 2 }}\) là một số thực x thỏa mãn \({x^3} = 7 + 5\sqrt 2 \). Vì vậy, để chứng minh \(\sqrt[3]{{7 + 5\sqrt 2 }} = \sqrt 2 + 1\) chỉ cần chứng tỏ \({\left( {\sqrt 2 + 1} \right)^3} = 7 + 5\sqrt 2 \) Thật vậy áp dụng hằng đẳng thức \({\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\) ta có: \({\left( {\sqrt 2 + 1} \right)^3} = {\left( {\sqrt 2 } \right)^3} + 3{\left( {\sqrt 2 } \right)^2} + 3\sqrt 2 + 1 \\= 2\sqrt 2 + 6 + 3\sqrt 2 + 1 = 7 + 5\sqrt 2 \) Vậy \(\sqrt[3]{{7 + 5\sqrt 2 }} = \sqrt 2 + 1\).
Quảng cáo
|