Giải bài 6.6 trang 43 sách bài tập toán 12 - Kết nối tri thứcTung con xúc xắc cân đối liên tiếp hai lần. Xét các biến cố sau: A: “Xuất hiện mặt một chấm ở lần gieo thứ nhất”; B: “Xuất hiện mặt hai chấm ở lần gieo thứ hai”; C: “Tổng số chấm xuất hiện ở hai lần gieo bằng 7”. Chứng minh rằng: a) Hai biến cố A và B độc lập; b) Hai biến cố B và C độc lập; c) Hai biến cố A và C độc lập. Quảng cáo
Đề bài Tung con xúc xắc cân đối liên tiếp hai lần. Xét các biến cố sau: A: “Xuất hiện mặt một chấm ở lần gieo thứ nhất”; B: “Xuất hiện mặt hai chấm ở lần gieo thứ hai”; C: “Tổng số chấm xuất hiện ở hai lần gieo bằng 7”. Chứng minh rằng: a) Hai biến cố A và B độc lập; b) Hai biến cố B và C độc lập; c) Hai biến cố A và C độc lập. Phương pháp giải - Xem chi tiết Ý a: Liệt kê các biến cố và chứng minh \(P\left( {AB} \right) = P\left( A \right) \cdot P\left( B \right)\). Ý b: Liệt kê các biến cố và chứng minh \(P\left( {BC} \right) = P\left( B \right) \cdot P\left( C \right)\). Ý c: Liệt kê các biến cố và chứng minh \(P\left( {AC} \right) = P\left( A \right) \cdot P\left( C \right)\). Lời giải chi tiết a) Ta có \(A = \left\{ {\left( {1,1} \right);\left( {1,2} \right);\left( {1,3} \right);\left( {1,4} \right);\left( {1,5} \right);\left( {1,6} \right)} \right\}\); \(B = \left\{ {\left( {1,2} \right);\left( {2,3} \right);\left( {3,2} \right);\left( {4,2} \right);\left( {5,2} \right);\left( {6,2} \right)} \right\}\); \(AB = \left\{ {\left( {1,2} \right)} \right\}\) Suy ra \(P\left( A \right) = \frac{6}{{36}} = \frac{1}{6};P\left( B \right) = \frac{6}{{36}} = \frac{1}{6};P\left( {AB} \right) = \frac{1}{6} \Rightarrow P\left( {AB} \right) = P\left( A \right) \cdot P\left( B \right)\). Vậy hai biến cố A và B độc lập. b) Ta có \(C = \left\{ {\left( {1,6} \right);\left( {2,5} \right);\left( {3,4} \right);\left( {4,3} \right);\left( {5,2} \right);\left( {6,1} \right)} \right\}\); \(BC = \left\{ {\left( {5,2} \right)} \right\}\). Suy ra \(P\left( C \right) = \frac{6}{{36}} = \frac{1}{6} \Rightarrow P\left( {BC} \right) = P\left( B \right) \cdot P\left( C \right)\). Vậy hai biến cố B và C độc lập. c) Ta có \(AC = \left\{ {\left( {1,6} \right)} \right\}\) nên \(P\left( {AC} \right) = \frac{1}{6} \Rightarrow P\left( {AC} \right) = P\left( A \right) \cdot P\left( C \right)\). Vậy hai biến cố A và C độc lập.
Quảng cáo
|