Giải bài 50 trang 69 sách bài tập toán 9 - Cánh diều tập 1

Cho biểu thức \(C = \left( {\frac{{\sqrt x - 2}}{{x - 1}} - \frac{{\sqrt x + 2}}{{x + 2\sqrt x + 1}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\) với \(x \ge 0,x \ne 1\). a) Rút gọn biểu thức C. b) Tìm giá trị lớn nhất của C. c) Tìm giá trị của \(x\) để C có giá trị là các số dương.

Quảng cáo

Đề bài

Cho biểu thức \(C = \left( {\frac{{\sqrt x  - 2}}{{x - 1}} - \frac{{\sqrt x  + 2}}{{x + 2\sqrt x  + 1}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\) với \(x \ge 0,x \ne 1\).

a) Rút gọn biểu thức C.

b) Tìm giá trị lớn nhất của C.

c) Tìm giá trị của \(x\) để C có giá trị là các số dương.

Phương pháp giải - Xem chi tiết

a) Quy đồng mẫu thức các phân thức trong ngoặc.

b) Biến đổi \(C =  - \sqrt x \left( {\sqrt x  - 1} \right) =  - \left( {x - \sqrt x } \right) =  - \left( {x - 2.\frac{1}{2}\sqrt x  + \frac{1}{4}} \right) + \frac{1}{4} =  - {\left( {\sqrt x  - \frac{1}{2}} \right)^2} + \frac{1}{4}\)

Biện luận giá trị lớn nhất của C.

c) Áp dụng \(A.B > 0\) khi A,B cùng dấu.

Lời giải chi tiết

a) \(C = \left( {\frac{{\sqrt x  - 2}}{{x - 1}} - \frac{{\sqrt x  + 2}}{{x + 2\sqrt x  + 1}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\)

\(= \left( {\frac{{\sqrt x  - 2}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}} - \frac{{\sqrt x  + 2}}{{{{\left( {\sqrt x  + 1} \right)}^2}}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\)

\( = \left( {\frac{{\left( {\sqrt x  - 2} \right)\left( {\sqrt x  + 1} \right)}}{{\left( {\sqrt x  - 1} \right){{\left( {\sqrt x  + 1} \right)}^2}}} - \frac{{\left( {\sqrt x  + 2} \right)\left( {\sqrt x  - 1} \right)}}{{{{\left( {\sqrt x  + 1} \right)}^2}\left( {\sqrt x  - 1} \right)}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\)

\(\begin{array}{l} = \left( {\frac{{x - \sqrt x  - 2}}{{\left( {\sqrt x  - 1} \right){{\left( {\sqrt x  + 1} \right)}^2}}} - \frac{{x + \sqrt x  - 2}}{{{{\left( {\sqrt x  + 1} \right)}^2}\left( {\sqrt x  - 1} \right)}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\\ = \frac{{x - \sqrt x  - 2 - x - \sqrt x  + 2}}{{\left( {\sqrt x  - 1} \right){{\left( {\sqrt x  + 1} \right)}^2}}}.\frac{{{{\left( {1 - x} \right)}^2}}}{2}\\ = \frac{{ - 2\sqrt x }}{{\left( {\sqrt x  - 1} \right){{\left( {\sqrt x  + 1} \right)}^2}}}.\frac{{{{\left( {1 - x} \right)}^2}}}{2}\\ = \frac{{ - \sqrt x {{\left( {1 - x} \right)}^2}}}{{\left( {x - 1} \right)\left( {\sqrt x  + 1} \right)}}\\ = \frac{{ - \sqrt x \left( {x - 1} \right)}}{{\sqrt x  + 1}}\\ =  - \sqrt x \left( {\sqrt x  - 1} \right)\end{array}\)

Vậy \(C =  - \sqrt x \left( {\sqrt x  - 1} \right)\) với \(x \ge 0,x \ne 1\).

b) \(C =  - \sqrt x \left( {\sqrt x  - 1} \right) =  - \left( {x - \sqrt x } \right)\)

\( =  - \left( {x - 2.\frac{1}{2}\sqrt x  + \frac{1}{4}} \right) + \frac{1}{4} =  - {\left( {\sqrt x  - \frac{1}{2}} \right)^2} + \frac{1}{4}\)

Với \(x \ge 0,x \ne 1\) ta có \({\left( {\sqrt x  - \frac{1}{2}} \right)^2} \ge 0\) suy ra \( - {\left( {\sqrt x  - \frac{1}{2}} \right)^2} \le 0\), do đó \( - {\left( {\sqrt x  - \frac{1}{2}} \right)^2} + \frac{1}{4} \le \frac{1}{4}\)

Dấu “=” xảy ra khi \({\left( {\sqrt x  - \frac{1}{2}} \right)^2} = 0\) hay \(x = \frac{1}{4}\) (tmdk).

Vậy giá trị lớn nhất của C là \(\frac{1}{4}\) khi \(x = \frac{1}{4}\).

c) Ta có \(C =  - \sqrt x \left( {\sqrt x  - 1} \right) = \sqrt x \left( {1 - \sqrt x } \right)\)

Ta thấy \(\sqrt x  \ge 0\) với \(x \ge 0\) nên \(C > 0\) khi \(\sqrt x  > 0\) và \(1 - \sqrt x  > 0\)

\(\sqrt x  > 0\) hay \(x > 0\)

\(1 - \sqrt x  > 0\) hay \(x < 1\)

Kết hợp với điều kiện xác định, ta có \(0 < x < 1\). Vậy \(0 < x < 1\) thỏa mãn đề bài.

  • Giải bài 51 trang 69 sách bài tập toán 9 - Cánh diều tập 1

    Tìm x, biết: a) \(\frac{5}{3}\sqrt {15x} - \sqrt {15x} - 2 = \frac{1}{3}\sqrt {15x} \) với \(x \ge 0\). b) \(\sqrt {9{x^2}} = \left| { - 18} \right|\) với \(x \ge 0\). c) \({x^2} - 8 = 0\) d) \(\sqrt {{x^2} - 49} - \sqrt {x - 7} = 0\) với \(x \ge 7\)

  • Giải bài 49 trang 69 sách bài tập toán 9 - Cánh diều tập 1

    Cho biểu thức \(B = \frac{{x - 2}}{{x + 2\sqrt x }} - \frac{1}{{\sqrt x }} + \frac{1}{{\sqrt x + 2}}\) với \(x > 0\). a) Rút gọn biểu thức B. b) Tính giá trị biểu thức B tại \(x = 3 - 2\sqrt 2 .\) c) Tìm giá trị của \(x \in N*\) để B nguyên.

  • Giải bài 48 trang 69 sách bài tập toán 9 - Cánh diều tập 1

    Cho biểu thức \(A = \frac{{\sqrt x + 1}}{{\sqrt x - 1}} + \frac{{\sqrt x - 1}}{{\sqrt x + 1}} - \frac{{3\sqrt x + 1}}{{x - 1}}\) với \(x \ge 0,x \ne 1\) a) Rút gọn biểu thức A. b) Tìm giá trị của biểu thức A tại \(x = 121\). c) Tìm giá trị của \(x\) để \(A = \frac{1}{2}\). d) Tìm giá trị của \(x\) để \(A = \sqrt x - 1\).

  • Giải bài 47 trang 68 sách bài tập toán 9 - Cánh diều tập 1

    Rút gọn biểu thức a) \(\left( {5\sqrt {\frac{1}{5}} - \frac{1}{2}\sqrt {20} + \sqrt 5 } \right)\sqrt 5 \) b) \(\left( {\sqrt {\frac{1}{7}} - \sqrt {\frac{9}{7}} + \sqrt 7 } \right):\sqrt 7 \) c) \({\left( {\sqrt {\frac{2}{3}} - \sqrt {\frac{3}{2}} } \right)^2}\) d) \(\frac{{\sqrt {{{312}^2} - {{191}^2}} }}{{\sqrt {503} }}\) e) \(\sqrt {27.{{\left( {1 - \sqrt 3 } \right)}^4}} :3\sqrt {15} \) g) \(\frac{{\sqrt[3]{{135}}}}{{\sqrt[3]{5}}} - \sqrt[3]{{54}}.\sqrt[3]{4}\)

  • Giải bài 46 trang 68 sách bài tập toán 9 - Cánh diều tập 1

    Tốc độ lăn \(v(m/s)\) của vật thể có khối lượng m (kg) chịu tác động từ lực Ek được cho bởi công thức \(v = \sqrt {\frac{{2{E_k}}}{m}} \). a) Tính tốc độ lăn của quả bóng nặng 3kg khi một người tác động lực Ek = 18J lên quả bóng. b) Muốn lăn của quả bóng nặng 3kg với tốc độ 6m/s thì cần tác động lực bao nhiêu jun lên quả bóng đó?

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close