Giải bài 43 trang 49 sách bài tập toán 10 - Cánh diều

Bảng dưới đây thống kê sản lượng thủy sản của VN từ năm 2013 đến năm 2020 (đơn vị: triệu tấn)

Quảng cáo

Đề bài

Bảng dưới đây thống kê sản lượng thủy sản của VN từ năm 2013 đến năm 2020 (đơn vị: triệu tấn)

Năm

2013

2014

2015

2016

2017

2018

2019

2020

Sản lượng (triệu tấn)

6,053

6,319

6,563

6,728

7,279

7,743

8,150

8,410

 

a) Viết mẫu số liệu thống kê sản lượng thủy sản của VN nhận đươc từ bảng trên

b) Tìm số trung bình cộng, trung bị và tứ phân vị của mẫu số liệu đó

c) Tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu đó

d) Tìm phương sai và độ lệch chuẩn của mẫu số liệu đó

Phương pháp giải - Xem chi tiết

+ Viết mẫu số liệu theo thứ tự không giảm

+ Sắp xếp số liệu theo thứ tự không giảm và tìm khoảng biến thiên theo công thức\(R = {x_n} - {x_1}\) với số cao nhất và thấp nhất lần lượt \({x_n},{x_1}\)

+ Khoảng tứ phân vị: \(\Delta Q = {Q_3} - {Q_1}\)

Bước 1: Sắp xếp các số liệu theo thứ tự không giảm.

Bước 2: Tính cỡ mẫu \(n\), tìm tứ phân vị thứ hai \({Q_2}\)(chính là trung vị của mẫu).

Bước 3: Tìm tứ phân vị thứ nhất: là trung vị của nửa số liệu đã sắp xếp bên trái \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)

Bước 4: Tìm tứ phân vị thứ ba: là trung vị của nửa số liệu đã sắp xếp bên phải \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)

+ Tìm phương sai theo công thức \({S^2} = \frac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + ... + {n_k}{x_k}^2} \right) - {\overline x ^2}\) và độ lệch chuẩn \(S = \sqrt {{S^2}} \)

Lời giải chi tiết

a) Viết mẫu số liệu thống kê sản lượng thủy sản của VN nhận đươc từ bảng trên: 6,053; 6,319; 6,563; 6,728; 7,279; 7,743; 8,150; 8,140

b)

+ Số trung bình của mẫu số liệu là: \(\overline x  = \frac{{6,053 + 6,319 + 6,563 + 6,728 + 7,279 + 7,743 + 8,150 + 8,140}}{8} = 7,155625\)

+ Vì \(n = 8\) là số chẵn nên tứ phân vị thứ hai là: \({Q_2} = \left( {6,728 + 7,279} \right):2 = 7,0035\) là tứ phân vị

+ Tứ phân vị thứ nhất là trung vị của 4 số đầu tiên của mẫu số liệu: \({Q_1} = \left( {6,319 + 6,563} \right):2 = 6,441\)

+ Tứ phân vị thứ ba là trung vị của 4 số cuối của mẫu số liệu: \({Q_3} = \left( {7,743 + 8,150} \right) = 7,9465\)

c)

+ Số cao nhất và thấp nhất lần lượt là 8,140 và 6,053 do đó khoảng biến thiên của dãy số liệu trên là: \(R = 8,140 - 6,053 = 2,357\)

+ Khoảng tứ phân vị: \(\Delta Q = {Q_3} - {Q_1} = 7,9465 - 6,441 = 1,5055\)

d)

+ Phương sai: \({S^2} = \frac{1}{8}(6,{053^2} + 6,{319^2} + ... + 8,{140^2}) - 7,{155625^2} \approx 0,67\)

+ Độ lệch chuẩn: \(S = \sqrt {{S^2}}  \approx \sqrt {0,67}  \approx 0,82\)

  • Giải bài 44 trang 50 sách bài tập toán 10 - Cánh diều

    Một hội thảo quốc tế gồm 12 học sinh đến từ các nước: VN, Nhật Bản, Singapore, Ấn Độ, Hàn Quốc, Brasil, Canada, Tây Ban Nha, Đức, Pháp, Nam Phi, Cameroon, mỗi nước chỉ có đúng 1 học sinh. Chọn ra ngẫu nhiên 2 học sinh trong nhóm học sinh quốc tế để tham gia BTC:

  • Giải bài 45 trang 50 sách bài tập toán 10 - Cánh diều

    Trong một trò chơi, bạn Hằng ghi tên 63 tỉnh, thành phố trực thuộc Trung ương của VN (tính đến năm 2021) vào 63 phiếu, hai phiếu khác nhau ghi tên hai nơi khác nhau, rồi bỏ tất cả các phiếu đó vào một hộp kín. Bạn Hoài rút ngẫu nhiên 2 phiếu. Tính xác suất của mỗi biến cố sau:

  • Giải bài 46 trang 50 sách bài tập toán 10 - Cánh diều

    Một đội thanh niên tình nguyện gồm 27 người đến từ các tỉnh (thành phố): Kon Tum, Gia Lai, Đắk Lắk, Đắk Nông, Lâm Đồng, Phú Yên, Khánh Hòa, Ninh Thuận, Bình Thuận, Bà Rịa – Vũng Tàu, Bình Dương, Bình Phước, Đồng Nai, Tây Ninh, Long An, Tiền Giang, Vĩnh Long, Bến Tre, Đồng Tháp, Trà Vinh, An Giang, Cần Thơ, Hậu Giang, Bạc Liêu, Sóc Trăng, Kiên Giang và Cà Mau; mỗi tỉnh chỉ có đúng một thành viên của đội.

  • Giải bài 47 trang 50 sách bài tập toán 10 - Cánh diều

    Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên một chiếc thẻ từ trong hộp, ghi lại số của thẻ được rút ra và bỏ lại thẻ đó vào hộp. Xét phép thử “Rút ngẫu nhiên liên tiếp 3 chiếc thẻ trong hộp”.

  • Giải bài 48 trang 50 sách bài tập toán 10 - Cánh diều

    Có 3 khách hàng (không quen biết nhau) cùng đến một cửa hàng có 5 quầy phục vụ khác nhau. Tính xác suất để có 2 khách hàng cùng vào 1 quầy và khách hàng còn lại vào quầy khác.

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close