Bài 4.10 trang 201 SBT giải tích 12Giải bài 4.10 trang 201 sách bài tập giải tích 12. Tính các lũy thừa sau:... Quảng cáo
Đề bài Tính các lũy thừa sau: a) \({\left( {3 - 4i} \right)^2}\) b) \({\left( {2\; + 3i} \right)^3}\) c) \({\left[ {\left( {4\; + {\rm{ }}5i} \right) - \left( {4\; + 3i} \right)} \right]^5}\) d) \({(\sqrt 2 - i\sqrt 3 )^2}\) Phương pháp giải - Xem chi tiết Áp dụng các hằng đẳng thức đáng nhớ kết hợp với các phép toán cộng, trừ, nhân số phức. Xem chi tiết tại đây. Lời giải chi tiết a) \({(3 - 4i)^2} = {3^2} - 2.3.4i + {(4i)^2}\)\( = 9 - 24i - 16 = - 7 - 24i\) b) \({(2 + 3i)^3}\)\( = {2^3} + {3.2^2}.3i + 3.2.{(3i)^2} + {(3i)^3}\) \( = 8 + 36i - 54 + 27{i^3}\) \( = - 46 + 36i - 27i\) \( = - 46 + 9i\) c) \({\left[ {(4 + 5i) - (4 + 3i)} \right]^5} = {\left( {2i} \right)^5}\)\( = {2^5}.{i^5} = 32.{i^4}.i = 32i\) d) \({\left( {\sqrt 2 - i\sqrt 3 } \right)^2}\)\( = 2 - 2.\sqrt 2 .\sqrt 3 i + {\left( {i\sqrt 3 } \right)^2}\) \( = 2 - 2\sqrt 6 i - 3 = - 1 - 2i\sqrt 6 \). Loigiaihay.com
Quảng cáo
|