Giải bài 3 trang 122 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Cho hình chóp S. ABCD có đáy ABCD là một hình bình hành. Gọi G là trọng tâm của tam giác SAB, I là trung điểm của AB và M là điểm thuộc cạnh AD sao cho AM=13AD. Đường thẳng đi qua M và song song với AB cắt CI tại N. Chứng minh: a) NG//(SCD); b) MG//(SCD).

Tổng hợp đề thi giữa kì 2 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Cho hình chóp S. ABCD có đáy ABCD là một hình bình hành. Gọi G là trọng tâm của tam giác SAB, I là trung điểm của AB và M là điểm thuộc cạnh AD sao cho AM=13AD. Đường thẳng đi qua M và song song với AB cắt CI tại N. Chứng minh:

a) NG//(SCD);

b) MG//(SCD).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về điều kiện để một đường thẳng song song với một mặt phẳng để chứng minh: Nếu đường thẳng a không nằm trong mặt phẳng (P) và song song với một đường thẳng b nào đó nằm trong (P) thì a song song với (P). 

Lời giải chi tiết

a) Gọi F là giao điểm của MN và BC.

Ta có: MN//AB, suy ra NF//BI (vì F thuộc MN, I thuộc AB)

Tam giác CIB có: NF//BI nên theo định lí Thalès ta có: INIC=BFBC (1)

Mặt khác, AM=13ADAMAD=13

Lại có MF///AB//DC nên BFCB=AMAD=13 (2)

Từ (1) và (2) ta có: NICI=BFBC=13

Vì G là trọng tâm của tam giác SAB nên IGIS=13

Tam giác SIC có: GISI=NICI=13 nên GN//SC (định lí Thalès đảo)

Vì GN//SC, SC(SDC), GN không nằm trong mặt phẳng (SCD) nên NG//(SCD)

b) Trong mặt phẳng (ABCD), gọi O là giao điểm của MI và DC.

Trong tam giác OCI, có NM//OC suy ra IMIO=INIC=13 (định lí Thalès).

Tam giác SIO có: IMIO=IGIS=13, suy ra MG//OS (định lí Thalès đảo)

OS(SDC), MG không nằm trong mặt phẳng (SCD). Do đó, MG//(SCD).

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close