Giải bài 18 trang 80 SBT toán 10 - Cánh diềuMột người đi dọc bờ biển từ vị trí A đến vị trí B và quan sát một con tàu C đang neo đậu ngoài khơi. Quảng cáo
Đề bài Một người đi dọc bờ biển từ vị trí A đến vị trí B và quan sát một con tàu C đang neo đậu ngoài khơi. Người đó tiến hành đo đạc và thu được kết quả: \(AB = 30m,\widehat {CAB} = {60^0},\widehat {CBA} = {50^0}\) (Hình 23). Tính khoảng cách từ vị trí A đến con tàu C(làm tròn kết quả đến hàng phần mười theo đơn vị mét)? Phương pháp giải - Xem chi tiết Bước 1: Tính số đo góc \(\widehat {ACB}\) Bước 2: Sử dụng định lí sin để tính độ dài AC của ∆ABC rồi kết luận Lời giải chi tiết Ta có: \(\widehat {ACB} = {180^0} - (\widehat {CBA} + \widehat {CAB}) = {70^0}\) Áp dụng định lí sin cho ∆ABC ta có: \(\frac{{AC}}{{\sin \widehat {CBA}}} = \frac{{AB}}{{\sin \widehat {ACB}}} \Rightarrow AC = \frac{{AB.\sin \widehat {CBA}}}{{\sin \widehat {ACB}}} = \frac{{30.\sin {{50}^0}}}{{\sin {{70}^0}}} \approx 24,5\) Vậy khoảng cách từ vị trí A đến con tàu C là 24,5 m
Quảng cáo
|