Giải bài 1.18 trang 23 Chuyên đề học tập Toán 10 – Kết nối tri thứcTrong mặt phẳng tọa độ, viết phương trình đường tròn đi qua ba điểm A(0;1), B(2;3) và C(4;1) Quảng cáo
Đề bài Trong mặt phẳng tọa độ, viết phương trình đường tròn đi qua ba điểm A(0;1), B(2;3) và C(4;1) Phương pháp giải - Xem chi tiết Gọi phương trình đường tròn đi qua 3 điểm đó là: \({x^2} + {y^2} + 2ax + 2by + c = 0\) Thay tọa độ A, B, C vào pt đường tròn => ta được hệ pt 3 ẩn a,b,c. Lời giải chi tiết Gọi phương trình đường tròn (I) đi qua 3 điểm A, B, C là: \({x^2} + {y^2} + 2ax + 2by + c = 0\) \(A\left( {0;1} \right) \in (I):1 + 2b + c = 0\) hay \(2b + c = - 1\) \(B\left( {2;3} \right) \in (I):4 + 9 + 4a + 6b + c = 0\) hay \(4a + 6b + c = - 13\) \(C\left( {4;1} \right) \in (I):16 + 1 + 8a + 2b + c = 0\) hay \(8a + 2b + c = - 17\) Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}2b + c = - 1\\4a + 6b + c = - 13\\8a + 2b + c = - 17\end{array} \right.\) Dùng máy tính cầm tay giải HPT, ta được \(a = - 2,{\rm{ }}b = - 1,{\rm{ }}c = 1.\) Vậy phương trình đường tròn cần tìm là: \({x^2} + {y^2} -4x -2y + 1 = 0\)
Quảng cáo
|