Giải bài 1 trang 59 sách bài tập toán 12 - Chân trời sáng tạoCho mặt cầu (left( S right)) có tâm (Ileft( {2; - 1;4} right)) và bán kính (R = 5). Các điểm (Aleft( {3;1;5} right),Bleft( { - 1;11;14} right),)(Cleft( {6;2;4} right)) nằm trong, nằm trên hay nằm ngoài mặt cầu (left( S right))? Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Cho mặt cầu \(\left( S \right)\) có tâm \(I\left( {2; - 1;4} \right)\) và bán kính \(R = 5\). Các điểm \(A\left( {3;1;5} \right),B\left( { - 1;11;14} \right),\)\(C\left( {6;2;4} \right)\) nằm trong, nằm trên hay nằm ngoài mặt cầu \(\left( S \right)\)? Phương pháp giải - Xem chi tiết Cho mặt cầu \(\left( S \right)\) có tâm \({\rm{I}}\), bán kính \({\rm{R}}\) và một điểm \(A\). + Nếu \(IA < R\): \(A\) nằm trong mặt cầu. + Nếu \(IA = R\): \(A\) nằm trên mặt cầu. + Nếu \(IA > R\): \(A\) nằm ngoài mặt cầu. Lời giải chi tiết Ta có: \(IA = \sqrt {{{\left( {3 - 2} \right)}^2} + {{\left( {1 - \left( { - 1} \right)} \right)}^2} + {{\left( {5 - 4} \right)}^2}} = \sqrt 6 < R\). Vậy \(A\) nằm trong mặt cầu \(\left( S \right)\). \(IB = \sqrt {{{\left( { - 1 - 2} \right)}^2} + {{\left( {11 - \left( { - 1} \right)} \right)}^2} + {{\left( {14 - 4} \right)}^2}} = \sqrt {253} > R\). Vậy \(B\) nằm ngoài mặt cầu \(\left( S \right)\). \(IC = \sqrt {{{\left( {6 - 2} \right)}^2} + {{\left( {2 - \left( { - 1} \right)} \right)}^2} + {{\left( {4 - 4} \right)}^2}} = \sqrt 5 = R\). Vậy \(C\) nằm trên mặt cầu \(\left( S \right)\).
Quảng cáo
|