Giải bài 1 trang 34 vở thực hành Toán 9 tập 2

Vẽ đồ thị của các hàm số (y = frac{5}{2}{x^2}) và (y = - frac{5}{2}{x^2}) trên cùng một mặt phẳng tọa độ.

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Quảng cáo

Đề bài

Vẽ đồ thị của các hàm số \(y = \frac{5}{2}{x^2}\) và \(y =  - \frac{5}{2}{x^2}\) trên cùng một mặt phẳng tọa độ.

Phương pháp giải - Xem chi tiết

- Cách vẽ đồ thị hàm số \(y = a{x^2}\left( {a \ne 0} \right)\):

+ Lập bảng ghi một số cặp giá trị tương ứng của x và y.

+ Trong mặt phẳng tọa độ Oxy, biểu diễn các cặp điểm (x; y) trong bảng giá trị trên và nối chúng lại để được một đường cong là đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\).

Lời giải chi tiết

+ Vẽ đồ thị hàm số \(y = \frac{5}{2}{x^2}\):

Lập bảng một số giá trị tương ứng giữa x và y.

Biểu diễn các điểm \(\left( { - 2;10} \right);\left( { - 1;\frac{5}{2}} \right);\left( {0;0} \right);\left( {1;\frac{5}{2}} \right),\left( {2;10} \right)\) trên mặt phẳng tọa độ Oxy và nối chúng lại ta được đồ thị hàm số \(y = \frac{5}{2}{x^2}\).

+ Vẽ đồ thị hàm số \(y =  - \frac{5}{2}{x^2}\):

Lập bảng một số cặp giá trị tương ứng giữa x và y.

Biểu diễn các điểm \(\left( { - 2; - 10} \right);\left( { - 1; - \frac{5}{2}} \right);\left( {0;0} \right);\left( {1; - \frac{5}{2}} \right);\left( {2; - 10} \right)\) trên mặt phẳng tọa độ Oxy và nối chúng lại ta được đồ thị hàm số \(y =  - \frac{5}{2}{x^2}\).

  • Giải bài 2 trang 35 vở thực hành Toán 9 tập 2

    Cho hàm số (y = a{x^2}). Xác định hệ số a, biết đồ thị hàm số đi qua điểm A(3; 3). Vẽ đồ thị của hàm số trong trường hợp đó.

  • Giải bài 3 trang 35 vở thực hành Toán 9 tập 2

    Giải các phương trình sau: a) (5{x^2} - 6sqrt 5 x + 2 = 0); b) (2{x^2} - 2sqrt 6 x + 3 = 0).

  • Giải bài 4 trang 35, 36 vở thực hành Toán 9 tập 2

    Cho phương trình ({x^2} - 11x + 30 = 0). Gọi ({x_1},{x_2}) là hai nghiệm của phương trình. Không giải phương trình, hãy tính: a) (x_1^2 + x_2^2); b) (x_1^3 + x_2^3).

  • Giải bài 5 trang 36 vở thực hành Toán 9 tập 2

    Tìm hai số u và v, biết: a) (u + v = 13) và (uv = 40); b) (u - v = 4) và (uv = 77).

  • Giải bài 6 trang 36 vở thực hành Toán 9 tập 2

    Các kĩ sư đảm bảo an toàn của đường cao tốc thường sử dụng công thức (d = 0,05{v^2} + 1,1v) để ước tính khoảng cách an toàn tối thiểu d (feet) (tức là độ dài quãng đường mà xe đi được kể từ khi đạp phanh đến khi xe dừng lại) đối với một phương tiện di chuyển với tốc độ v (dặm/ giờ) (theo Algebra 2, NXB MacGraw-Hill, 2008). Giả sử giới hạn tốc độ trên một đường cao tốc nào đó là 70 dặm/ giờ. Nếu một ô tô có thể dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó có chạy nhanh hơn giới hạn tốc

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close