Giải bài 1 trang 29, 30 vở thực hành Toán tập 2

Tính nhẩm nghiệm của mỗi phương trình sau: a) (sqrt 2 {x^2} - left( {sqrt 2 + 1} right)x + 1 = 0); b) (2{x^2} + left( {sqrt 3 - 1} right)x - 3 + sqrt 3 = 0).

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Quảng cáo

Đề bài

Tính nhẩm nghiệm của mỗi phương trình sau:

a) \(\sqrt 2 {x^2} - \left( {\sqrt 2  + 1} \right)x + 1 = 0\);

b) \(2{x^2} + \left( {\sqrt 3  - 1} \right)x - 3 + \sqrt 3  = 0\).

Phương pháp giải - Xem chi tiết

Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\).

Nếu \(a + b + c = 0\) thì phương trình có một nghiệm là \({x_1} = 1\), còn nghiệm kia là \({x_2} = \frac{c}{a}\).

Nếu \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} =  - 1\), còn nghiệm kia là \({x_2} =  - \frac{c}{a}\).

Lời giải chi tiết

a) Ta có: \(a + b + c = \sqrt 2  - \sqrt 2  - 1 + 1 = 0\).

Do đó phương trình có hai nghiệm là \({x_1} = 1\) và \({x_2} = \frac{c}{a} = \frac{1}{{\sqrt 2 }}\).

b) Ta có: \(a - b + c = 2 - \sqrt 3  + 1 - 3 + \sqrt 3  = 0\).

Do đó phương trình có hai nghiệm là \({x_1} =  - 1\) và \({x_2} =  - \frac{c}{a} =  - \frac{{ - 3 + \sqrt 3 }}{2} = \frac{{3 - \sqrt 3 }}{2}\).

  • Giải bài 2 trang 30 vở thực hành Toán 9 tập 2

    Gọi ({x_1},{x_2}) là hai nghiệm của phương trình bậc hai ({x^2} - 5x + 3 = 0). Không giải phương trình, hãy tính: a) (x_1^2 + x_2^2); b) ({left( {{x_1} - {x_2}} right)^2}).

  • Giải bài 3 trang 30 vở thực hành Toán 9 tập 2

    Gọi ({x_1},{x_2}) là hai nghiệm của phương trình ({x^2} - 2x - 5 = 0). Không giải phương trình, hãy tính: a) (x_1^3 + x_2^3); b) (frac{1}{{x_1^2}} + frac{1}{{x_2^2}}).

  • Giải bài 4 trang 30, 31 vở thực hành Toán 9 tập 2

    Tìm hai số u và v, biết: a) (u + v = 15,uv = 56); b) ({u^2} + {v^2} = 125,uv = 22).

  • Giải bài 5 trang 31 vở thực hành Toán 9 tập 2

    Một chiếc hộp có dạng hình hộp chữ nhật, không có nắp, có đáy là hình vuông, tổng diện tích xung quanh và diện tích đáy là (800c{m^2}). Chiều cao của hộp là 10cm. Tính độ dài cạnh đáy của chiếc hộp (làm tròn kết quả đến hàng phần mười của cm).

  • Giải bài 6 trang 31, 32 vở thực hành Toán 9 tập 2

    Nhu cầu của khách hàng đối với một loại áo phông tại một cửa hàng được cho bởi phương trình (p = 100 - 0,02x), trong đó p là giá tiền của mỗi chiếc áo (nghìn đồng) và x là số lượng áo phông bán được. Doanh thu R (nghìn đồng) khi bán được x chiếc áo phông là: (R = xp = xleft( {100 - 0,02x} right)). Hỏi cần phải bán được bao nhiêu chiếc áo phông để doanh thu đạt 120 triệu đồng?

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close