Giải bài 2 trang 30 vở thực hành Toán 9 tập 2Gọi ({x_1},{x_2}) là hai nghiệm của phương trình bậc hai ({x^2} - 5x + 3 = 0). Không giải phương trình, hãy tính: a) (x_1^2 + x_2^2); b) ({left( {{x_1} - {x_2}} right)^2}). Quảng cáo
Đề bài Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình bậc hai \({x^2} - 5x + 3 = 0\). Không giải phương trình, hãy tính: a) \(x_1^2 + x_2^2\); b) \({\left( {{x_1} - {x_2}} \right)^2}\). Phương pháp giải - Xem chi tiết a) Biến đổi \(x_1^2 + x_2^2 \) \(= {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}\), từ đó thay \({x_1} + {x_2} \) \(= \frac{{ - b}}{a};{x_1}.{x_2} \) \(= \frac{c}{a}\) để tính giá trị biểu thức. b) Biến đổi \({\left( {{x_1} - {x_2}} \right)^2} \) \(= x_1^2 - 2{x_1}{x_2} + x_2^2 \) \(= {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2}\), từ đó thay \({x_1} + {x_2}= \frac{{ - b}}{a};{x_1}.{x_2}= \frac{c}{a}\) để tính giá trị biểu thức. Lời giải chi tiết Theo định lí Viète ta có: \({x_1} + {x_2} \) \(= 5;{x_1}.{x_2} \) \(= 3\). Do đó: a) \(x_1^2 + x_2^2 \) \(= {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} \) \(= {5^2} - 2.3 \) \(= 19\) b) \({\left( {{x_1} - {x_2}} \right)^2} \) \(= {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} \) \(= {5^2} - 4.3 \) \(= 13\)
Quảng cáo
|