Các mục con
-
Câu hỏi mục 3 trang 52
Viết phương trình chính tắc của hypebol, biết độ trục ảo bằng 6 và tâm sai bằng \(\frac{5}{4}.\)
Xem chi tiết -
Câu hỏi mục 4 trang 43, 44, 45
Giả sử đường elip (E) là tập hợp các điểm M trong mặt phẳng sao cho \(M{F_1} + M{F_2} = 2a\), ở đó \({F_1}{F_2} = 2c\) với \(0 < c < a\).
Xem chi tiết -
Bài 3 trang 67
Cho parabol có phương trình chính tắc \({y^2} = 2x\). Tìm tiêu điểm, phương trình đường chuẩn của parabol và vẽ parabol đó.
Xem chi tiết -
Câu hỏi mục 4 trang 53
Trong mặt phẳng, xét đường hypebol (H) là tập hợp các điểm M sao cho \(\left| {M{F_1} - M{F_2}} \right| = 2a\), ở đó \({F_1}{F_2} = 2c\) với \(c > a > 0\).
Xem chi tiết -
Câu hỏi mục 5 trang 45, 46
Cho elip (E) \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \((0 < b < a)\)
Xem chi tiết -
Bài 4 trang 67
Trong mặt phẳng tọa độ Oxy, cho đường thẳng \(\Delta :x = - 5\) và điểm \(F\left( { - 4;0} \right)\). Lấy 3 điểm \(A\left( { - 3;1} \right),B\left( {2;8} \right),C\left( {0;3} \right)\)
Xem chi tiết -
Bài 2 trang 59
Trong mặt phẳng tọa độ Oxy, cho parabol có phương trình chính tắc là \({y^2} = 8x\)
Xem chi tiết -
Câu hỏi mục 5 trang 53, 54
Cho hypebol (H) có phương trình chính tắc là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\).
Xem chi tiết -
Câu hỏi mục 6 trang 46
Cho elip (E) có phương trình chính tắc là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \((0 < b < a)\)
Xem chi tiết