Bài 9 trang 41 SGK Đại số và Giải tích 11

Nghiệm âm lớn nhất của phương trình:

Quảng cáo

Đề bài

Nghiệm âm lớn nhất của phương trình \(2{\tan ^2}x + 5\tan x + 3 = 0\) là:

A. \({{ - \pi } \over 3}\)             B. \({{ - \pi } \over 4}\)

C. \({{ - \pi } \over 6}\)               D. \({{ - 5\pi } \over 6}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

B1: Đặt \(t= \tan {x}\), giải phương trình bậc hai ẩn t.

B2: Giải phương trình lượng giác cơ bản và biểu diễn các nghiệm trên đường tròn lượng giác.

Lời giải chi tiết

Ta có:

\(\begin{array}{l}
2{\tan ^2}x + 5\tan x + 3 = 0 \\\Leftrightarrow \left[ \begin{array}{l}
\tan x = - 1\\
\tan x = - \frac{3}{2}
\end{array} \right.\\
\tan x = - 1 \Leftrightarrow x = - \frac{\pi }{4} + k\pi \\
\tan x = - \frac{3}{2}\Leftrightarrow  x = \arctan \left( { - \frac{3}{2}} \right) + k\pi
\end{array}\)

Nghiệm âm lớn nhất của họ nghiệm \(x =  - \frac{\pi }{4} + k\pi \) là \(x =  - \frac{\pi }{4}\).

Nghiệm âm lớn nhất của họ nghiệm \(x = \arctan \left( { - \frac{3}{2}} \right) + k\pi \) là \(x = \arctan \left( { - \frac{3}{2}} \right)\)

Mà \(\arctan \left( { - \frac{3}{2}} \right) \approx  - 0,983, \) \(- \frac{\pi }{4} \approx  - 0,785 \Rightarrow  - \frac{\pi }{4} > \arctan \left( { - \frac{3}{2}} \right)\)

Vậy nghiệm âm lớn nhất của pt là \(x =  - \frac{\pi }{4}\).

Cách khác:

Dựa vào đường tròn lượng giác ta có: \(x =  - {\pi  \over 4}\) là nghiệm âm lớn nhất của phương trình đã cho.

Chọn đáp án B.

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close