Câu 6.45 trang 204 SBT Đại số 10 Nâng cao

Giải bài tập Câu 6.45 trang 204 SBT Đại số 10 Nâng cao

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

LG a

Cho \(\cos \alpha  = 0,6\) và \(0 < \alpha  < \dfrac{\pi }{2}\). Hãy tính \(\cos \dfrac{\alpha }{2};\sin \dfrac{\alpha }{2};\tan \dfrac{\alpha }{2}.\)

Lời giải chi tiết:

\(\begin{array}{l}\cos \dfrac{\alpha }{2} = \sqrt {\dfrac{{1 + \cos \alpha }}{2}}  = \dfrac{{2\sqrt 5 }}{5};\\\sin \dfrac{\alpha }{2} = \sqrt {\dfrac{{1 - \cos \alpha }}{2}}  = \dfrac{{\sqrt 5 }}{5};\\\tan \dfrac{\alpha }{2} = \dfrac{1}{2}.\end{array}\)

LG b

 Cho \(\sin \beta  = \dfrac{3}{5}\) và \(\dfrac{\pi }{2} < \beta  < \pi \). Hãy tính \(\cos \dfrac{\beta }{2};\sin \dfrac{\beta }{2};\tan \dfrac{\beta }{2}\).

Lời giải chi tiết:

\(\begin{array}{l}\cos \beta  =  - \sqrt {1 - \dfrac{9}{{25}}}  =  - \dfrac{4}{5};\\\cos \dfrac{\beta }{2} = \sqrt {\dfrac{{1 - \dfrac{4}{5}}}{2} = }  = \dfrac{1}{{\sqrt {10} }};\\\sin \dfrac{\beta }{2} = \sqrt {\dfrac{{1 + \dfrac{4}{5}}}{2}}  = \dfrac{3}{{\sqrt {10} }};\tan \dfrac{\beta }{2} = 3.\end{array}\)

Loigiaihay.com

Quảng cáo
list
close
Gửi bài