tuyensinh247

Câu 6.48 trang 205 SBT Đại số 10 Nâng cao

Giải bài tập Câu 6.48 trang 205 SBT Đại số 10 Nâng cao

Quảng cáo

Đề bài

Cho \(\cos \alpha  = m\).

Hãy tính \({\cos ^2}\dfrac{\alpha }{2};{\sin ^2}\dfrac{\alpha }{2};{\tan ^2}\dfrac{\alpha }{2}\) theo m (giả sử \(\tan \dfrac{\alpha }{2}\) xác định)

Lời giải chi tiết

\(\begin{array}{l}{\cos ^2}\dfrac{\alpha }{2} = \dfrac{{1 + \cos \alpha }}{2} = \dfrac{{1 + m}}{2};\\{\sin ^2}\dfrac{\alpha }{2} = \dfrac{{1 - \cos \alpha }}{2} = \dfrac{{1 - m}}{2};\\{\tan ^2}\dfrac{\alpha }{2} = \dfrac{{1 - m}}{{1 + m}}.\end{array}\)

 

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close