Câu 6.52 trang 205 SBT Đại số 10 Nâng caoGiải bài tập Câu 6.52 trang 205 SBT Đại số 10 Nâng cao Quảng cáo
Đề bài a) Chứng minh rằng nếu \(\cos \left( {\alpha + \beta } \right) = 0\) thì \(\sin \left( {\alpha + 2\beta } \right) = \sin \alpha \). b) Chứng minh rằng nếu \(\sin \left( {2\alpha + \beta } \right) = 3\sin \beta \) và \(\cos \alpha \ne 0,\cos \left( {\alpha + \beta } \right) \ne 0\) thì \(\tan \left( {\alpha + \beta } \right) = 2\tan \alpha \) Lời giải chi tiết a) Nếu \(\cos \left( {\alpha + \beta } \right) = 0\) thì \(\begin{array}{l}\sin \left( {\alpha + 2\beta } \right) = \sin \alpha \cos 2\beta + \sin 2\beta \cos \alpha \\ = \sin \alpha \left( {1 - 2{{\sin }^2}\beta } \right) + 2\sin \beta \cos \beta \cos \alpha \\ = \sin \alpha + 2\sin \beta \left( { - \sin \alpha \sin \beta + \cos \alpha \cos \beta } \right)\\ = \sin \alpha + 2\sin \beta \cos \left( {\alpha + \beta } \right) = \sin \alpha \end{array}\) Ta có \(\begin{array}{l}\sin \left( {2\alpha + \beta } \right) = 3\sin \beta \\ \Leftrightarrow 2\sin \alpha \cos \alpha \cos \beta + \left( {2{{\cos }^2}\alpha - 1} \right)\sin \beta = 3\sin \beta \\ \Leftrightarrow \cos \alpha \sin \left( {\alpha + \beta } \right) = 2\sin \beta \,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\end{array}\) Mặt khác \(\begin{array}{l}\sin \left( {2\alpha + \beta } \right) = 2\sin \beta \\ \Leftrightarrow 2\sin \alpha \cos \alpha \cos \beta + \left( {1 - 2{{\sin }^2}\alpha } \right)\sin \beta = 3sin\beta \\ \Leftrightarrow \sin \alpha \cos \left( {\alpha + \beta } \right) = \sin \beta \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array}\) Từ (1) và (2) suy ra \(\cot \alpha \tan \left( {\alpha + \beta } \right) = 2.\) Do đó \(\tan \left( {\alpha + \beta } \right) = 2\tan \alpha .\) Loigiaihay.com
Quảng cáo
|