Câu 6.57 trang 206 SBT Đại số 10 Nâng cao

Giải bài tập Câu 6.57 trang 206 SBT Đại số 10 Nâng cao

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Xét các biểu thức

\(\begin{array}{l}S = \sin \alpha  + sin2\alpha  + sin3\alpha  +  \ldots  + \sin n\alpha ,\\T = 1 + \cos \alpha  + \cos 2\alpha  + \cos 3\alpha  +  \ldots cosn\alpha \end{array}\)

(\(n\) là một số nguyên dương)

Chứng minh

LG a

\(S\sin \dfrac{\alpha }{2} = \sin \dfrac{{n\alpha }}{2}\sin \dfrac{{\left( {n + 1} \right)\alpha }}{2}\)

Lời giải chi tiết:

Với \(k = 1,2,3, \ldots ,n,\) ta có:

\(\sin k\alpha \sin \dfrac{\alpha }{2} = \dfrac{1}{2}\left[ {\cos \dfrac{{\left( {2k - 1} \right)\alpha }}{2} - \cos \dfrac{{\left( {2k + 1} \right)\alpha }}{2}} \right]\)

Nên

\(\begin{array}{l}S.\sin \dfrac{\alpha }{2} = \dfrac{1}{2}\left[ {\left( {\cos \dfrac{\alpha }{2} - \cos \dfrac{{3\alpha }}{2}} \right) + \left( {\cos \dfrac{{3\alpha }}{2} - \cos \dfrac{{5\alpha }}{2}} \right)} \right.\\\left. { +  \ldots  + \left( {\cos \dfrac{{\left( {2n - 1} \right)\alpha }}{2} - \cos \dfrac{{\left( {2n + 1} \right)\alpha }}{2}} \right)} \right]\\ = \dfrac{1}{2}\left[ {\left( {\cos \dfrac{\alpha }{2} - \cos \dfrac{{\left( {2n + 1} \right)\alpha }}{2}} \right)} \right]\\ = \sin \dfrac{{n\alpha }}{2}\sin \dfrac{{\left( {n + 1} \right)\alpha }}{2}\end{array}\)

LG b

\(T\sin \dfrac{\alpha }{2} = \cos \dfrac{{n\alpha }}{2}\sin \dfrac{{\left( {n + 1} \right)\alpha }}{2}\)

Lời giải chi tiết:

Với \(k = 1,2,3 \ldots ,n,\) ta có:

\(\cos k\alpha \sin \dfrac{\alpha }{2} = \dfrac{1}{2}\left[ {\sin \dfrac{{\left( {2k + 1} \right)\alpha }}{2} - \sin \dfrac{{\left( {2k - 1} \right)\alpha }}{2}} \right]\)

nên

\(\begin{array}{l}T\sin \dfrac{\alpha }{2} = \sin \dfrac{\alpha }{2} + \dfrac{1}{2}\left[ {\left( {\sin \dfrac{{3\alpha }}{2} - \sin \dfrac{\alpha }{2}} \right) + \left( {\sin \dfrac{{5\alpha }}{2} - \sin \dfrac{{3\alpha }}{2}} \right)} \right.\\\left. { +  \ldots  + \left( {\sin \dfrac{{\left( {2n + 1} \right)\alpha }}{2} - \sin \dfrac{{\left( {2n - 1} \right)\alpha }}{2}} \right)} \right]\\ = \dfrac{1}{2}\left[ {\sin \dfrac{{\left( {2n + 1} \right)\alpha }}{2} + \sin \dfrac{\alpha }{2}} \right]\\ = \cos \dfrac{{n\alpha }}{2}\sin \dfrac{{\left( {n + 2} \right)\alpha }}{2}\end{array}\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close