Câu 6.42 trang 204 SBT Đại số 10 Nâng caoGiải bài tập Câu 6.42 trang 204 SBT Đại số 10 Nâng cao Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
LG a Viết \(\dfrac{\pi }{{12}} = \dfrac{\pi }{3} - \dfrac{\pi }{4};\dfrac{\pi }{{12}} = \dfrac{1}{2}.\dfrac{\pi }{6},\) rồi dùng công thức cộng, công thức nhân đôi để tìm các giá trị lượng giác sin, côsin, tang của góc \(\dfrac{\pi }{{12}}\) bằng hai cách khác nhau và đối chiếu các kết quả tìm thấy. Lời giải chi tiết: \(\sin \dfrac{\pi }{{12}} = \dfrac{{\sqrt 2 }}{4}\left( {\sqrt 3 - 1} \right) = \dfrac{{\sqrt {2 - \sqrt 3 } }}{2};\) \(\cos \dfrac{\pi }{{12}} = \dfrac{{\sqrt 2 }}{4}\left( {\sqrt 3 + 1} \right) = \dfrac{{\sqrt {2 + \sqrt 3 } }}{2};\) \(\tan \dfrac{\pi }{{12}} = 2 - \sqrt 3 .\) LG b Tính sin, côsin, tang của các góc \({75^0},{105^0},{165^0}\) (không dùng máy tính bỏ túi) Lời giải chi tiết: \(\begin{array}{l}\sin {75^0} = \cos \dfrac{\pi }{{12}};\\\cos {75^0} = \sin \dfrac{\pi }{{12}};\\\tan {75^0} = \dfrac{1}{{\tan \dfrac{\pi }{{12}}}} = 2 + \sqrt 3 \end{array}\) \(\begin{array}{l}\sin {105^0} = \cos \dfrac{\pi }{{12}};\\\cos {105^0} = - \sin \dfrac{\pi }{{12}};\\\tan {105^0} = - \dfrac{1}{{\tan \dfrac{\pi }{{12}}}}\end{array}\) \(\begin{array}{l}\sin {165^0} = \sin \dfrac{\pi }{{12}};\\\cos {165^0} = - \cos \dfrac{\pi }{{12}};\\\tan {165^0} = - \tan \dfrac{\pi }{{12}}.\end{array}\) Loigiaihay.com
Quảng cáo
|