Câu 3.40 trang 64 SBT Đại số 10 Nâng cao

Giải bài tập Câu 3.40 trang 64 SBT Đại số 10 Nâng cao.

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Giải các hệ phương trình :

LG a

\(\left\{ {\begin{array}{*{20}{c}}{3\left| x \right| + 5y - 9 = 0}\\{2x - \left| y \right| = 7}\end{array}} \right.\)

Lời giải chi tiết:

\(\left\{ {\begin{array}{*{20}{c}}{3\left| x \right| + 5y - 9 = 0\,\,\,\,\left( 1 \right)}\\{2x - \left| y \right| = 7\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)}\end{array}} \right.\)

Từ (2) suy ra \(2x = 7 + |y|\), nên phải có x > 0.

Nếu y ≥ 0, hệ có dạng \(\left\{ \matrix{3{\rm{x}} + 5y = 9 \hfill \cr 2{\rm{x}} - y = 7 \hfill \cr} \right.\) Khi đó \(\left\{ \matrix{x = {{44} \over {13}} \hfill \cr y = - {3 \over {13}} \hfill \cr} \right.\)  (loại)

Nếu y < 0, hệ có dạng \(\left\{ {\begin{array}{*{20}{c}}{3{\rm{x}} + 5y = 9}\\{2{\rm{x}} + y = 7}\end{array}.} \right.\) Khi đó \(\left\{ {\begin{array}{*{20}{c}}{x = \dfrac{{26}}{7}}\\{y = \dfrac{{ - 3}}{7}}\end{array}} \right.\) (thỏa mãn)

Hệ có nghiệm duy nhất \(\left( {{\rm{x}};y} \right) = \left( {\dfrac{{26}}{7};\dfrac{{ - 3}}{7}} \right)\)

LG b

\(\left\{ {\begin{array}{*{20}{c}}{\left| x \right| - a = 1}\\{y - 2x = 5}\end{array}} \right.\) (a là tham số)

Lời giải chi tiết:

\(|x| = a + 1\)

Nếu a > -1 thì \(x = ± (a + 1)\), hệ có hai nghiệm là \(( a + 1 ; 2a + 7)\) và \((-a – 1 ; 3 – 2a).\)

Nếu a = -1 thì \(|x| = 0 ⇔ x = 0\), hệ có nghiệm là \((x ; y) = (0 ; 5)\)

Nếu a < -1 thì \(|x| = a + 1 < 0\), hệ vô nghiệm.

Loigiaihay.com

Quảng cáo
close