Câu 3.19 trang 143 sách bài tập Giải tích 12 Nâng cao

Dùng phương pháp lấy nguyên hàm từng phần, hãy tìm

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Dùng phương pháp lấy nguyên hàm từng phần, hãy tìm

\(\int {{x^2}{e^x}} dx\) 

Lời giải chi tiết:

\(\left( {{x^2} - 2x + 2} \right){e^x} + C\)                                    

Hướng dẫn: \(v' = {e^x},u = {x^2}\)

\(\int {3{x^2}{\rm{cos}}\left( {2x} \right)} dx\)

Lời giải chi tiết:

\({3 \over 4}\left( {2\cos x - 2\sin x + 2{x^2}\sin 2x} \right) + C\)           

Hướng dẫn: \(v' = c{\rm{os}}\left( {2x} \right),u = {x^2}\)

\(\int {{x^3}\ln \left( {2x} \right)} dx\)

Lời giải chi tiết:

\({{{x^4}\ln \left( {2x} \right)} \over 2} - {{{x^4}} \over {16}} + C\)                                           

Hướng dẫn: \(v' = {x^3},u = \ln \left( {2x} \right)\)

\(\int {{x^2}{\rm{cos}}\left( {3x} \right)} dx\)

Lời giải chi tiết:

\( - {{6x\cos \left( {3x} \right) - 2\sin \left( {3x} \right) + 9{x^2}\sin \left( {3x} \right)} \over {27}} + C\)

Loigiaihay.com

Quảng cáo
close