Câu 3.18 trang 61 SBT Đại số 10 Nâng cao

Giải bài tập Câu 3.18 trang 61 SBT Đại số 10 Nâng cao

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Giả sử \({x_1},{x_2}\) là các nghiệm của phương trình \(2{x^2} - 11x + 13 = 0.\)

Hãy tính:

LG a

\(x_1^3 + x_2^3\) ;

Lời giải chi tiết:

Theo định lí Vi-ét ta có \({x_1} + {x_2} = \dfrac{{11}}{2};{x_1}{x_2} = \dfrac{{13}}{2}\) (dễ thấy hai nghiệm đều dương). Do đó :

\(x_1^3 + x_2^3 = {\left( {{x_1} + {x_2}} \right)^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right)\)

\(= {\left( {\frac{{11}}{2}} \right)^3} - 3.\frac{{13}}{2}.\frac{{11}}{2} = \frac{{473}}{8}\)

LG b

\(x_1^4 + x_2^4\) ;

Lời giải chi tiết:

Theo định lí Vi-ét ta có \({x_1} + {x_2} = \dfrac{{11}}{2};{x_1}{x_2} = \dfrac{{13}}{2}\) (dễ thấy hai nghiệm đều dương). Do đó :

\(x_1^4 + x_2^4 = {\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}} \right]^2} - 2x_1^2x_2^2 \)

\(= \frac{{3409}}{{16}}\)

LG c

\(x_1^4 - x_2^4\) ;

Lời giải chi tiết:

Theo định lí Vi-ét ta có \({x_1} + {x_2} = \dfrac{{11}}{2};{x_1}{x_2} = \dfrac{{13}}{2}\) (dễ thấy hai nghiệm đều dương). Do đó :

\(x_1^4 - x_2^4 = \left( {{x_1} - {x_2}} \right)\left( {{x_1} + {x_2}} \right)\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}} \right]\)

Ta có :

\({\left( {{x_1} - {x_2}} \right)^2} = {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2}\)

\(\Rightarrow \left| {{x_1} - {x_2}} \right| = \dfrac{{\sqrt {17} }}{2}.\)

Giả sử \({x_1} < {x_2},\) ta có :

\({x_1} - {x_2} =  - \dfrac{{\sqrt {17} }}{2}.\) Do đó \(x_1^4 - x_2^4 =  - \dfrac{{759}}{{16}}\sqrt {17} .\)

Đối tượng trường hợp \({x_1} > {x_2},\) ta có \(x_1^4 - x_2^4 = \dfrac{{759}}{{16}}\sqrt {17} .\)

LG d

\(\dfrac{{{x_1}}}{{{x_2}}}\left( {1 - x_2^2} \right) + \dfrac{{{x_2}}}{{{x_1}}}\left( {1 - x_1^2} \right)\)

Lời giải chi tiết:

Theo định lí Vi-ét ta có \({x_1} + {x_2} = \dfrac{{11}}{2};{x_1}{x_2} = \dfrac{{13}}{2}\) (dễ thấy hai nghiệm đều dương). Do đó :

\( - \dfrac{{269}}{{26}}.\)

Gợi ý.

\(\dfrac{{{x_1}}}{{{x_2}}}\left( {1 - x_2^2} \right) + \dfrac{{{x_2}}}{{{x_1}}}\left( {1 - x_1^2} \right) = \dfrac{{{x_1}}}{{{x_2}}} + \dfrac{{{x_2}}}{{{x_1}}} - 2{x_1}{x_2}\)

\(= \dfrac{{x_1^2 + x_2^2}}{{{x_1}{x_2}}} - 2{x_1}{x_2}.\)

Loigiaihay.com

Quảng cáo
list
close
Gửi bài Hỏi bài