🔥 2K8 CHÚ Ý! MỞ ĐẶT CHỖ SUN 2026 - LUYỆN THI TN THPT - ĐGNL - ĐGTD

🍀 ƯU ĐÃI -70%! XUẤT PHÁT SỚM‼️

Chỉ còn 2 ngày
Xem chi tiết

Bài 3 trang 141 SGK Đại số và Giải tích 11

Tên của một học sinh được mã hóa bởi số 1530. Biết rằng mỗi chữ số trong số này là giá trị của một trong các biểu thức A, H, N, O với:

Quảng cáo

Đề bài

Tên của một học sinh được mã hóa bởi số 1530. Biết rằng mỗi chữ số trong số này là giá trị của một trong các biểu thức \(A, H, N, O\) với:

\(\begin{array}{l}A = \lim \dfrac{{3n - 1}}{{n + 2}}\\H = \lim (\sqrt {{n^2} + 2n}  - n)\\N = \lim \dfrac{{\sqrt n  - 2}}{{3n + 7}}\\O = \lim \dfrac{{{3^n} - {{5.4}^n}}}{{1 - 4^n}}.\end{array}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

A: Chia cả tử và mẫu cho \(n\).

H: Nhân liên hợp sau đó chia cả tử và mẫu cho \(n\).

N: Chia cả tử và mẫu cho \(n\).

O: Chia cả tử và mẫu cho \(4^n\).

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

\(\begin{array}{l}A = \lim \dfrac{{3n - 1}}{{n + 2}} = \lim \dfrac{{n(3 - \dfrac{1}{n})}}{{n(1 + \dfrac{2}{n})}} \\= \lim \dfrac{{3 - \dfrac{1}{n}}}{{1 + \dfrac{2}{n}}}  = \dfrac{{3 - \lim \dfrac{1}{n}}}{{1 + \lim \dfrac{2}{n}}}= 3\\H = \lim (\sqrt {{n^2} + 2n}  - n) = \lim \dfrac{{({n^2} + 2n) - {n^2}}}{{\sqrt {{n^2} + 2n}  + n}}\\ = \lim \dfrac{{2n}}{{n\left[ {\sqrt {1 + \dfrac{2}{n}}  + 1} \right]}} = \lim \dfrac{2}{{\sqrt {1 + \dfrac{2}{n}}  + 1}} \\ =  \dfrac{2}{{\sqrt {1 + \lim \dfrac{2}{n}}  + 1}} = \dfrac{2}{{\sqrt {1 + 0}  + 1}}= 1\\N = \lim \dfrac{{\sqrt n  - 2}}{{3n + 7}} = \lim \dfrac{{n(\sqrt {\dfrac{1}{n}}  - \dfrac{2}{n})}}{{n(3 + \dfrac{7}{n})}}\\ = \lim \dfrac{{\sqrt {\dfrac{1}{n}}  - \dfrac{2}{n}}}{{3 + \dfrac{7}{n}}} = \dfrac{{\sqrt {\lim \dfrac{1}{n}}  - \lim \dfrac{2}{n}}}{{3 + \lim \dfrac{7}{n}}} \\= \dfrac{{0 - 0}}{{3 + 0}}= 0\\O = \lim \dfrac{{{3^n} - {{5.4}^n}}}{{1 - 4^n}} = \lim \dfrac{{{4^n}\left[ {{{(\dfrac{3}{4})}^n} - 5} \right]}}{{{4^n}\left[ {{{(\dfrac{1}{4})}^n} - 1} \right]}}\\ = \lim \dfrac{{{{(\dfrac{3}{4})}^n} - 5}}{{{{(\dfrac{1}{4})}^n} - 1}} = \dfrac{{\lim {{\left( {\dfrac{3}{4}} \right)}^n} - 5}}{{\lim {{\left( {\dfrac{1}{4}} \right)}^n} - 1}} \\= \dfrac{{0 - 5}}{{0 - 1}}= 5\end{array}\)

Vậy số \(1530\) là mã số của chữ \(HOAN\).

 Loigiaihay.com

Quảng cáo

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

close