Câu 2.48 trang 77 sách bài tập Giải tích 12 Nâng caoHãy chứng minh Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Hãy chứng minh LG a \({\log _{{1 \over 2}}}3 + {\log _3}{1 \over 2} < - 2;\) Lời giải chi tiết: Ta có \({\log _{{1 \over 2}}}3 = {1 \over {{{\log }_3}{1 \over 2}}}\)và\({1 \over {\left| {{{\log }_3}{1 \over 2}} \right|}} + \left| {{{\log }_3}{1 \over 2}} \right| > 2\) ( theo công thức đổi cơ số của lôgarit,bất đẳng thức Cô- si và \({1 \over {\left| {{{\log }_3}{1 \over 2}} \right|}} \ne \left| {{{\log }_3}{1 \over 2}} \right|)\) Mặt khác, \({\log _3}{1 \over 2} < 0\) nên \( - {1 \over {{{\log }_3}{1 \over 2}}} - {\log _3}{1 \over 2} > 2\), hay \({\log _{{1 \over 2}}}3 + {\log _3}{1 \over 2} < - 2\) LG b \({4^{{{\log }_5}7}} = {7^{{{\log }_5}4}}\) Lời giải chi tiết: \({4^{{{\log }_5}7}} = {7^{{{\log }_5}4}} \Leftrightarrow {\log _4}{4^{{{\log }_5}7}} = {\log _4}{7^{{{\log }_5}4}} \) \(\Leftrightarrow {\log _5}7 = {\log _5}4.{\log _4}7\). Đẳng thức cuối cùng đúng suy ra đẳng thức đầu tiên đúng . LG c \({\log _3}7 + {\log _7}3 > 2;\) Lời giải chi tiết: Ta có \({\log _3}7 > 0\),\({\log _7}3 > 0\) và \({\log _3}7 = {1 \over {{{\log }_7}3}} \ne {\log _7}3\). Theo bất đẳng thức Cô-si, ta có \({1 \over {{{\log }_7}3}} + {\log _7}3 > 2\),suy ra \({\log _3}7 + {\log _7}3 > 2\). LG d \({3^{{{\log }_2}5}} = {5^{{{\log }_2}3}}.\) Lời giải chi tiết: \({3^{{{\log }_2}5}} = {5^{{{\log }_2}3}} \Leftrightarrow {\log _3}{3^{{{\log }_2}5}} = {\log _3}{5^{{{\log }_2}3}}\) \(\Leftrightarrow {\log _2}5 = {\log _2}3.{\log _3}5\). Đẳng thức cuối cùng đúng suy ra đẳng thức đầu tiên đúng . Loigiahay.com
Quảng cáo
|