Bài 9 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạoTính đạo hàm của các hàm số sau: Quảng cáo
Đề bài Tinh đạo hàm của các hàm số sau: a) \(y = \tan \left( {{e^x} + 1} \right)\); b) \(y = \sqrt {\sin 3x} \); c) \(y = \cot \left( {1 - {2^x}} \right)\). Phương pháp giải - Xem chi tiết Sử dụng công thức tính đạo hàm của hàm hợp: \(y{'_x} = y{'_u}.u{'_x}\). Lời giải chi tiết a) \(y' = \left( {\tan ({e^x} + 1)} \right)' = \frac{{({e^x} + 1)'}}{{{\rm{co}}{{\rm{s}}^2}({e^x} + 1)}} = \frac{{{e^x}}}{{{\rm{co}}{{\rm{s}}^2}({e^x} + 1)}}\) b) \(y' = \left( {\cot (1 - {2^x})} \right)' = - \frac{{(1 - {2^x})'}}{{{{\sin }^2}(1 - {2^x})}} = - \frac{{ - {2^x}.\ln 2}}{{{{\sin }^2}(1 - {2^x})}}\)\(y' = \left( {\sqrt {\sin 3x} } \right)' = \frac{{(\sin 3x)'}}{{2\sqrt {\sin 3x} }} = \frac{{3\cos 3x}}{{2\sqrt {\sin 3x} }}\) c) \(y' = \left( {\cot (1 - {2^x})} \right)' = - \frac{{(1 - {2^x})'}}{{{{\sin }^2}(1 - {2^x})}} = - \frac{{ - {2^x}.\ln 2}}{{{{\sin }^2}(1 - {2^x})}}\)\( = \frac{{{2^x}.\ln 2}}{{{{\sin }^2}(1 - {2^x})}}\)
Quảng cáo
|