Bài 8 trang 134 SGK Toán 9 tập 2

Cho hai đường tròn (O; R) và (O'; r) tiếp xúc ngoài (R > r).

Quảng cáo

Đề bài

Cho hai đường tròn \((O; R)\) và \((O'; r)\) tiếp xúc ngoài \((R > r).\) Hai tiếp tuyến chung \(AB\) và \(A'B'\) của hai đường tròn \((O)\) và \((O')\) cắt nhau tại \(P\) (\(A\) và \(A'\) thuộc đường tròn \((O'),\) \(B\) và \(B'\) thuộc đường tròn \((O)\)). Biết \(PA = AB = 4 cm.\) Tính diện tích hình tròn \((O').\) 

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Sử dụng định lý Ta-lét để tính \(PO'\) theo \(r\)

+) Sử dụng định lý Pytago cho tam giác vuông \(PO'A\)  để tính \({r^2}.\)

+) Diện tích hình tròn \(\left( {O'} \right)\) là \(S = \pi {r^2}.\) 

Lời giải chi tiết

Vì \(AB\) là tiếp tuyến chung của \((O)\) và  \((O’)\) nên \(OB \bot AB\) và \(O’A \bot AB\)

Xét hai tam giác \(OPB\) và \(O’AP\), ta có:

\(\widehat A = \widehat B = {90^0}\) 

\(\widehat {{P_1}}\) chung 

Vậy \(ΔOBP \backsim ∆ O’AP (g-g)\)  

\(\eqalign{
& \Rightarrow {r \over R} = {{PO'} \over {PO}} = {{PA} \over {PB}} = {4 \over 8} = {1 \over 2} \cr
& \Rightarrow R = 2{\rm{r}} \cr} \)

Xét tam giác OBP có: 

O'A // OB ( cùng vuông góc với BP)

AB = AP

\(\Rightarrow\) O'A là đường trung bình của \(∆OBP\))

\(\Rightarrow OO' = O'P=R + r = 3r\) 

Áp dụng định lí Py-ta-go trong tam giác vuông \(O’AP\)

\(O’P^2 = O’A^2 + AP^2\) hay \({\left( {3r} \right)^2} = {\rm{ }}{r^2} + {\rm{ }}{4^{2}} \Leftrightarrow {\rm{ }}9{r^2} = {\rm{ }}{r^2} + {\rm{ }}16{\rm{ }}\)

\( \Leftrightarrow {\rm{ }}8{\rm{ }}{r^2} = 16{\rm{ }} \Leftrightarrow {\rm{ }}{r^2} = {\rm{ }}2\)

Diện tích đường tròn \((O’;r)\) là:

\(S = π. r^2 = π.2 = 2π\) (\(cm^2\))

  • Bài 9 trang 135 SGK Toán 9 tập 2

    Giải bài 9 trang 135 SGK Toán 9 tập 2. Cho tam giác ABC nội tiếp đường tròn (O') và ngoại tiếp đường tròn (O). Tia AO cắt đường tròn (O') tại D. Ta có:

  • Bài 10 trang 135 SGK Toán 9 tập 2

    Cho tam giác nhọn ABC nội tiếp đường tròn(O). Các cung nhỏ AB, BC, CA có số đo lần lượt là x + 75o, 2x + 25o, 3x - 22o. Một góc của tam giác ABC có số đo là:

  • Bài 11 trang 135 SGK Toán 9 tập 2

    Giải bài 11 trang 135 SGK Toán 9 tập 2. Từ một điểm P ở ngoài đường tròn (O), kẻ cát tuyến PAB và PCD tới đường tròn. Gọi Q là một điểm nằm trên cung nhỏ BD (không chứa A và C) sao cho sđ cung BQ = 42° và sđ cung QD = 38°. Tính tổng

  • Bài 12 trang 135 SGK Toán 9 tập 2

    Một hình vuông và một hình tròn có chu vi bằng nhau. Hỏi hình nào có diện tích lớn hơn?

  • Bài 13 trang 135 SGK Toán 9 tập 2

    Cho đường tròn (O), cung BC có số đo bằng 120o, điểm A di chuyển trên cung lớn BC. Trên tia đối tia AB lấy điểm D sao cho AD = AC.

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close