Bài 51 trang 30 SGK Toán 9 tập 1Trục căn thức ở mẫu với giả thiết các biểu thức chữ đều có nghĩa: Quảng cáo
Đề bài Trục căn thức ở mẫu với giả thiết các biểu thức chữ đều có nghĩa: \(\dfrac{3}{\sqrt{3}+1};\,\,\,\dfrac{2}{\sqrt{3}-1};\,\,\,\dfrac{2+\sqrt{3}}{2-\sqrt{3}};\,\,\,\dfrac{b}{3+\sqrt{b}};\,\,\,\dfrac{p}{2\sqrt{p}-1}.\) Video hướng dẫn giải Phương pháp giải - Xem chi tiết Sử dụng công thức trục căn thức ở mẫu: + Với các biểu thức \(A,\ B,\ C\) mà \(A \ge 0\) và \(A \ne B^2\), ta có: \( \dfrac{C}{\sqrt A \pm B}=\dfrac{C(\sqrt A \mp \sqrt B)}{A - B^2}\) Lời giải chi tiết + Ta có: \(\dfrac{3}{\sqrt{3}+1}=\dfrac{3(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}=\dfrac{3\sqrt 3 - 3.1}{(\sqrt 3)^2-1^2}\) \(=\dfrac{3\sqrt 3 -3}{3-1}=\dfrac{3\sqrt{3}-3}{2}\). + Ta có: \(\dfrac{2}{\sqrt{3}-1}=\dfrac{2(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}=\dfrac{2(\sqrt 3 + 1)}{(\sqrt 3)^2-1^2}\) \(=\dfrac{2(\sqrt 3 + 1)}{3-1}=\dfrac{2(\sqrt{3}+1)}{2}=\sqrt{3}+1\). + Ta có: \(\dfrac{2+\sqrt{3}}{2-\sqrt{3}}=\dfrac{(2+\sqrt{3}).(2+\sqrt 3)}{(2-\sqrt{3})(2+\sqrt{3})}=\dfrac{(2+\sqrt{3})^2}{2^2-(\sqrt{3})^2}\) \(=\dfrac{2^2+2.2.\sqrt 3+(\sqrt{3})^2}{4-3}\) \(=\dfrac{7+4\sqrt 3}{1}=7+4\sqrt{3}\). + Ta có: \(\dfrac{b}{3+\sqrt{b}}=\dfrac{b(3-\sqrt{b})}{(3+\sqrt{b})(3-\sqrt{b})}\) \(=\dfrac{b(3-\sqrt{b})}{3^2-(\sqrt b)^2}=\dfrac{b(3-\sqrt{b})}{9-b};(b\neq 9)\). + Ta có: \(\dfrac{p}{2\sqrt{p}-1}=\dfrac{p(2\sqrt{p}+1)}{(2\sqrt{p}-1)(2\sqrt{p}+1)}\) \(=\dfrac{2p\sqrt{p}+p}{(2\sqrt{p})^2-1^2}\) \(=\dfrac{2p\sqrt{p}+p}{4p-1}\) Loigiaihay.com
Quảng cáo
|