Bài 54 trang 30 SGK Toán 9 tập 1

Rút gọn các biểu thức sau:

Quảng cáo

Đề bài

Rút gọn các biểu thức sau (giả thiết các biểu thức chữ đều có nghĩa): 

\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}};\,\,\, \dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}};\,\,\,\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}; \)

\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}};\,\,\, \dfrac{p-2\sqrt{p}}{\sqrt{p}-2}.\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+ \( (\sqrt a)^2=a\),  với mọi \(a \ge 0\).

+ \(\sqrt{a.b}=\sqrt a. \sqrt b\),  với \(a,\ b \ge 0\).

Lời giải chi tiết

* Ta có:

\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{(\sqrt 2)^2+ \sqrt 2}{1+ \sqrt 2}=\dfrac{\sqrt{2}(\sqrt{2}+1)}{1+\sqrt{2}}\)

\(=\dfrac{\sqrt 2(1+ \sqrt 2)}{\sqrt 2}=\sqrt{2}\).

Cách khác:

\(\begin{array}{l}
\dfrac{{2+ \sqrt 2 }}{{1 + \sqrt 2 }} = \dfrac{{\left( {2 + \sqrt 2 } \right)\left( {1 - \sqrt 2 } \right)}}{{\left( {1 + \sqrt 2 } \right)\left( {1 - \sqrt 2 } \right)}}\\
= \dfrac{{2.1 - 2\sqrt 2 + \sqrt 2 - {{\left( {\sqrt 2 } \right)}^2}}}{{{1^2} - {{\left( {\sqrt 2 } \right)}^2}}}\\
= \dfrac{{2 - 2\sqrt 2 + \sqrt 2 - 2}}{{1 - 2}}\\
= \dfrac{{ - \sqrt 2 }}{{ - 1}} = \sqrt 2
\end{array}\)

Nhận xét: Cách làm thứ nhất phân tích tử thành nhân tử rồi rút gọn với mẫu đơn giản hơn cách thứ hai.

* Ta có: 

\(\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\dfrac{\sqrt{3.5}-\sqrt{5.1}}{1-\sqrt{3}}\)\(=\dfrac{\sqrt{5}.\sqrt{3}-\sqrt{5}.1}{1-\sqrt{3}}\)

\(=\dfrac{\sqrt{5}(\sqrt{3}-1)}{1-\sqrt{3}}=\dfrac{-\sqrt{5}(1-\sqrt{3})}{1-\sqrt{3}}=-\sqrt{5}\).

+ Ta có:

\(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}=\dfrac{(\sqrt 2)^2.\sqrt 3-\sqrt 6}{\sqrt{4.2}- 2}\)

\(=\dfrac{\sqrt 2.(\sqrt 2.\sqrt 3)-\sqrt 6}{2\sqrt 2 -2}\)\(=\dfrac{\sqrt2.\sqrt{6}-\sqrt 6}{2(\sqrt{2}-1)}\)

\(=\dfrac{\sqrt{6}(\sqrt{2}-1)}{2(\sqrt{2}-1)}=\dfrac{\sqrt{6}}{2}\).

+ Ta có: Điều kiện xác định: \(1-\sqrt{a} \ne 0\) nên \(a \ne 1\)

\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}=\dfrac{(\sqrt a)^2-\sqrt a .1}{1-\sqrt a}=\dfrac{\sqrt{a}(\sqrt{a}-1)}{1-\sqrt{a}}\)

                   \(=\dfrac{-\sqrt{a}(1-\sqrt{a})}{1-\sqrt{a}}=-\sqrt{a}\).

+ Ta có: Điều kiện xác định: \(\sqrt{p}-2 \ne 0\) nên \(p \ne 4\)

\(\dfrac{p-2\sqrt{p}}{\sqrt{p}-2}=\dfrac{(\sqrt p)^2-2.\sqrt{p}}{\sqrt{p}-2}=\dfrac{\sqrt{p}(\sqrt{p}-2)}{\sqrt{p}-2}=\sqrt{p}\).

Loigiaihay.com

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close