🍀 ƯU ĐÃI -70%! XUẤT PHÁT SỚM‼️
Bài 5 trang 119 SGK Hình học 11Cho hình lập phương ABCD.A'B'C'D' cạnh a... Quảng cáo
Đề bài Cho hình lập phương ABCD.A′B′C′D′ cạnh a. a) Chứng minh rằng B′D vuông góc với mặt phẳng (BA′C′). b) Tính khoảng cách giữa hai mặt phẳng (BA′C′) và (ACD′). c) Tính khoảng cách giữa hai đường thẳng BC′ và CD′. Video hướng dẫn giải Phương pháp giải - Xem chi tiết a) Chứng minh B′D vuông góc với hai đường thẳng cắt nhau trong mp(BA′C′). b) Chứng minh (BA′C′)//(ACD′). Xác định khoảng cách giữa hai mặt phẳng song song. c) Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đường thẳng đó. Lời giải chi tiết a) Ta có: BB′⊥(A′B′C′D′)⇒BB′⊥A′C′{A′C′⊥B′D′A′C′⊥BB′⇒A′C′⊥(BB′D′D)⇒A′C′⊥B′DDC⊥(BCC′B′)⇒DC⊥BC′{BC′⊥B′CBC′⊥DC⇒BC′⊥(A′B′CD)⇒BC′⊥B′D{B′D⊥A′C′B′D⊥BC′⇒B′D⊥(BA′C′) Cách khác: Ta có B′A′=B′B=B′C′ ⇒B′ thuộc trục của tam giác A′BC′ (1) DA′=DB=DC′ (đường chéo các hình vuông bằng nhau) ⇒D cũng thuộc trục của tam giác A′BC′ (2) Từ (1) và (2) ⇒B′D là trục của (BA′C′) ⇒B′D⊥(BA′C′). b) Ta có: {BC′//AD′A′C′//ACBC′,A′C′⊂(BA′C′)AD′,AC⊂(ACD′) ⇒(BA′C′)//(ACD′) Mà B′D⊥(BA′C′) nên B′D⊥(ACD′) Gọi G=B′D∩(BA′C′);H=B′D∩(ACD′) ⇒d((BA′C′);(ACD′))=GH Gọi O,O′ lần lượt là tâm các hình vuông ABCD,A′B′C′D′ ta có: BO′//D′O nên O′G//D′H, mà O′ là trung điểm của B′D′⇒G là trung điểm của B′H. ⇒GB′=GH (3) BO′//D′O nên OH//GB, mà O là trung điểm của BD⇒H là trung điểm của DG. ⇒HG=HD (4) Từ (3) và (4) suy ra: GB′=GH=HD⇒GH=13B′D Do ABCD.A′B′C′D′ là hình lập phương cạnh a nên: B′D=√B′B2+BD2=√B′B2+BA2+AD2=√a2+a2+a2=a√3 ⇒HG=a√33. Vậy d((BA′C′);(ACD′))=a√33. c) BC′⊂(BA′C′); CD′⊂(ACD′), mà (BA′C′)//(ACD′) Vậy d(BC′,CD′)=d((BA′C′),(ACD′))=a√33. Loigiaihay.com
Quảng cáo
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
|