Bài 49 trang 13 SBT Hình học 10 Nâng caoGiải bài 49 trang 13 sách bài tập Hình học 10 Nâng cao. Xét trong mặt phẳng tọa độ Oxy. Biết M(x_1;y_1), N(x_2;y_2), P(x_3;y_3) là các trung điểm ba cạnh của một tam giác. Tìm tọa độ các đỉnh của tam giác. Quảng cáo
Đề bài Xét trong mặt phẳng tọa độ \(Oxy\). Biết \(M(x_1;y_1),\) \(N(x_2;y_2),\) \(P(x_3;y_3)\) là các trung điểm ba cạnh của một tam giác. Tìm tọa độ các đỉnh của tam giác. Lời giải chi tiết Giả sử tam giác ABC nhận \(M, N, P\) làm trung điểm của các cạnh \(AB, BC, CA\). Ta có \(\,\,\,\overrightarrow {MA} = \overrightarrow {NP} \\ \Leftrightarrow \,\,\,\left\{ \matrix{ {x_A} - {x_M} = {x_P} - {x_N} \hfill \cr {y_A} - {y_M} = {y_P} - {y_N} \hfill \cr} \right.\\\Leftrightarrow \,\,\,\left\{ \matrix{ {x_A} = {x_1} - {x_2} + {x_3} \hfill \cr {y_A} = {y_1} - {y_2} + {y_3} \hfill \cr} \right.\) Suy ra \(A = ({x_1} - {x_2} + {x_3}\,;\,{y_1} - {y_2} + {y_3}).\) Tương tự ta tính được \(B = ({x_1} + {x_2} - {x_3}\,;\,{y_1} + {y_2} - {y_3});\) \(C = ({x_2} + {x_3} - {x_1}\,;\,{y_2} + {y_3} - {y_1}).\) Loigiaihay.com
Quảng cáo
|